Electronic nose for on-line quality evaluation of black tea using incremental SOM techniques

Saptarshi Ghosh, N. Bhattacharyya, B. Tudu, R. Bandyopadhyay
{"title":"Electronic nose for on-line quality evaluation of black tea using incremental SOM techniques","authors":"Saptarshi Ghosh, N. Bhattacharyya, B. Tudu, R. Bandyopadhyay","doi":"10.1109/ISPTS.2015.7220128","DOIUrl":null,"url":null,"abstract":"The limitations of the classical pattern recognition algorithms may be addressed by an incremental way of learning, through which the existing knowledge base can be expanded from the information gathered solely from new set of samples. In this study, a novel incremental Self Organizing Map (i-SOM) algorithm is proposed and applied on the data generated from an electronic nose for black tea quality evaluation. The algorithm enables data with similar features (data points corresponding to different batches of black tea having similar aroma content) to be clustered together without the necessity of access to previously generated dataset.","PeriodicalId":6520,"journal":{"name":"2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS)","volume":"101 1","pages":"273-277"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2015.7220128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The limitations of the classical pattern recognition algorithms may be addressed by an incremental way of learning, through which the existing knowledge base can be expanded from the information gathered solely from new set of samples. In this study, a novel incremental Self Organizing Map (i-SOM) algorithm is proposed and applied on the data generated from an electronic nose for black tea quality evaluation. The algorithm enables data with similar features (data points corresponding to different batches of black tea having similar aroma content) to be clustered together without the necessity of access to previously generated dataset.
基于增量SOM技术的红茶质量在线评价电子鼻
经典模式识别算法的局限性可以通过一种增量学习的方式来解决,通过这种方式,现有的知识库可以从单独从新样本集收集的信息中扩展。本文提出了一种新的增量自组织映射(i-SOM)算法,并将其应用于电子鼻生成的红茶质量评价数据。该算法使具有相似特征的数据(对应于具有相似香气含量的不同批次红茶的数据点)能够聚类在一起,而无需访问先前生成的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信