The classical limit of mean-field quantum spin systems

Christiaan J. F. van de Ven
{"title":"The classical limit of mean-field quantum spin systems","authors":"Christiaan J. F. van de Ven","doi":"10.1063/5.0021120","DOIUrl":null,"url":null,"abstract":"The theory of strict deformation quantization of the two sphere $S^2\\subset\\mathbb{R}^3$ is used to prove the existence of the classical limit of mean-field quantum spin chains, whose ensuing Hamiltonians are denoted by $H_N$ and where $N$ indicates the number of sites. Indeed, since the fibers $A_{1/N}=M_{N+1}(\\mathbb{C})$ and $A_0=C(S^2)$ form a continuous bundle of $C^*$-algebras over the base space $I=\\{0\\}\\cup 1/\\mathbb{N}^*\\subset[0,1]$, one can define a strict deformation quantization of $A_0$ where quantization is specified by certain quantization maps $Q_{1/N}: \\tilde{A}_0 \\rightarrow A_{1/N}$, with $\\tilde{A}_0$ a dense Poisson subalgebra of $A_0$. Given now a sequence of such $H_N$, we show that under some assumptions a sequence of eigenvectors $\\psi_N$ of $H_N$ has a classical limit in the sense that $\\omega_0(f):=\\lim_{N\\to\\infty}\\langle\\psi_N,Q_{1/N}(f)\\psi_N\\rangle$ exists as a state on $A_0$ given by $\\omega_0(f)=\\frac{1}{n}\\sum_{i=1}^nf(\\Omega_i)$, where $n$ is some natural number. We give an application regarding spontaneous symmetry breaking (SSB) and moreover we show that the spectrum of such a mean-field quantum spin system converges to the range of some polynomial in three real variables restricted to the sphere $S^2$.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0021120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The theory of strict deformation quantization of the two sphere $S^2\subset\mathbb{R}^3$ is used to prove the existence of the classical limit of mean-field quantum spin chains, whose ensuing Hamiltonians are denoted by $H_N$ and where $N$ indicates the number of sites. Indeed, since the fibers $A_{1/N}=M_{N+1}(\mathbb{C})$ and $A_0=C(S^2)$ form a continuous bundle of $C^*$-algebras over the base space $I=\{0\}\cup 1/\mathbb{N}^*\subset[0,1]$, one can define a strict deformation quantization of $A_0$ where quantization is specified by certain quantization maps $Q_{1/N}: \tilde{A}_0 \rightarrow A_{1/N}$, with $\tilde{A}_0$ a dense Poisson subalgebra of $A_0$. Given now a sequence of such $H_N$, we show that under some assumptions a sequence of eigenvectors $\psi_N$ of $H_N$ has a classical limit in the sense that $\omega_0(f):=\lim_{N\to\infty}\langle\psi_N,Q_{1/N}(f)\psi_N\rangle$ exists as a state on $A_0$ given by $\omega_0(f)=\frac{1}{n}\sum_{i=1}^nf(\Omega_i)$, where $n$ is some natural number. We give an application regarding spontaneous symmetry breaking (SSB) and moreover we show that the spectrum of such a mean-field quantum spin system converges to the range of some polynomial in three real variables restricted to the sphere $S^2$.
平均场量子自旋系统的经典极限
用两个球体$S^2\subset\mathbb{R}^3$的严格变形量子化理论证明了平均场量子自旋链经典极限的存在性,其后续哈密顿量记为$H_N$,其中$N$表示位点数。事实上,由于纤维$A_{1/N}=M_{N+1}(\mathbb{C})$和$A_0=C(S^2)$在基空间$I=\{0\}\cup 1/\mathbb{N}^*\subset[0,1]$上形成了一个连续的$C^*$ -代数束,因此可以定义$A_0$的严格变形量化,其中量化由某些量化映射$Q_{1/N}: \tilde{A}_0 \rightarrow A_{1/N}$指定,而$\tilde{A}_0$是$A_0$的密集泊松子代数。现在给定一个这样的$H_N$序列,我们证明在某些假设下,$H_N$的特征向量序列$\psi_N$具有一个经典极限,即$\omega_0(f):=\lim_{N\to\infty}\langle\psi_N,Q_{1/N}(f)\psi_N\rangle$作为$\omega_0(f)=\frac{1}{n}\sum_{i=1}^nf(\Omega_i)$给出的$A_0$上的一个状态存在,其中$n$是某个自然数。我们给出了一个关于自发对称破落(SSB)的应用,并证明了这种平均场量子自旋系统的谱收敛于三个实数变量限制在球体$S^2$上的多项式范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信