{"title":"Fine-grained binary code authorship identification","authors":"Xiaozhu Meng","doi":"10.1145/2950290.2983962","DOIUrl":null,"url":null,"abstract":"Binary code authorship identification is the task of determining the authors of a piece of binary code from a set of known authors. Modern software often contains code from multiple authors. However, existing techniques assume that each program binary is written by a single author. We present a new finer-grained technique to the tougher problem of determining the author of each basic block. Our evaluation shows that our new technique can discriminate the author of a basic block with 52% accuracy among 282 authors, as opposed to 0.4% accuracy by random guess, and it provides a practical solution for identifying multiple authors in software.","PeriodicalId":20532,"journal":{"name":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950290.2983962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Binary code authorship identification is the task of determining the authors of a piece of binary code from a set of known authors. Modern software often contains code from multiple authors. However, existing techniques assume that each program binary is written by a single author. We present a new finer-grained technique to the tougher problem of determining the author of each basic block. Our evaluation shows that our new technique can discriminate the author of a basic block with 52% accuracy among 282 authors, as opposed to 0.4% accuracy by random guess, and it provides a practical solution for identifying multiple authors in software.