{"title":"On the total variation distance of labelled Markov chains","authors":"Taolue Chen, S. Kiefer","doi":"10.1145/2603088.2603099","DOIUrl":null,"url":null,"abstract":"Labelled Markov chains (LMCs) are widely used in probabilistic verification, speech recognition, computational biology, and many other fields. Checking two LMCs for equivalence is a classical problem subject to extensive studies, while the total variation distance provides a natural measure for the \"inequivalence\" of two LMCs: it is the maximum difference between probabilities that the LMCs assign to the same event. In this paper we develop a theory of the total variation distance between two LMCs, with emphasis on the algorithmic aspects: (1) we provide a polynomial-time algorithm for determining whether two LMCs have distance 1, i.e., whether they can almost always be distinguished; (2) we provide an algorithm for approximating the distance with arbitrary precision; and (3) we show that the threshold problem, i.e., whether the distance exceeds a given threshold, is NP-hard and hard for the square-root-sum problem. We also make a connection between the total variation distance and Bernoulli convolutions.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
Labelled Markov chains (LMCs) are widely used in probabilistic verification, speech recognition, computational biology, and many other fields. Checking two LMCs for equivalence is a classical problem subject to extensive studies, while the total variation distance provides a natural measure for the "inequivalence" of two LMCs: it is the maximum difference between probabilities that the LMCs assign to the same event. In this paper we develop a theory of the total variation distance between two LMCs, with emphasis on the algorithmic aspects: (1) we provide a polynomial-time algorithm for determining whether two LMCs have distance 1, i.e., whether they can almost always be distinguished; (2) we provide an algorithm for approximating the distance with arbitrary precision; and (3) we show that the threshold problem, i.e., whether the distance exceeds a given threshold, is NP-hard and hard for the square-root-sum problem. We also make a connection between the total variation distance and Bernoulli convolutions.