An adaptive neurofuzzy network for identification of the complicated nonlinear system

Ying Li, Bendu Bai, L. Jiao
{"title":"An adaptive neurofuzzy network for identification of the complicated nonlinear system","authors":"Ying Li, Bendu Bai, L. Jiao","doi":"10.1109/ISCAS.2000.857053","DOIUrl":null,"url":null,"abstract":"This paper presents a compound neural network model, i.e., adaptive neurofuzzy network (ANFN), which can be used for identifying the complicated nonlinear system. The proposed ANFN has a simple structure and exploits a hybrid algorithm combining supervised learning and unsupervised learning. In addition, ANFN is capable of overcoming the error of system identification due to the existence of some changing points and improving the accuracy of identification of the whole system. The effectiveness of the model and its algorithm is tested on the identification results of missile attacking area.","PeriodicalId":6422,"journal":{"name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","volume":"40 1","pages":"164-167 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2000.857053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a compound neural network model, i.e., adaptive neurofuzzy network (ANFN), which can be used for identifying the complicated nonlinear system. The proposed ANFN has a simple structure and exploits a hybrid algorithm combining supervised learning and unsupervised learning. In addition, ANFN is capable of overcoming the error of system identification due to the existence of some changing points and improving the accuracy of identification of the whole system. The effectiveness of the model and its algorithm is tested on the identification results of missile attacking area.
用于复杂非线性系统辨识的自适应神经模糊网络
本文提出了一种可用于复杂非线性系统辨识的复合神经网络模型,即自适应神经模糊网络(ANFN)。该算法结构简单,采用有监督学习和无监督学习相结合的混合算法。此外,该方法还能克服系统辨识中由于存在一些变化点而产生的误差,提高整个系统的辨识精度。通过对导弹攻击区域的识别结果,验证了该模型及其算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信