Preserving local densities in low-dimensional embeddings

ArXiv Pub Date : 2023-01-31 DOI:10.48550/arXiv.2301.13732
Jonas Fischer, R. Burkholz, Jilles Vreeken
{"title":"Preserving local densities in low-dimensional embeddings","authors":"Jonas Fischer, R. Burkholz, Jilles Vreeken","doi":"10.48550/arXiv.2301.13732","DOIUrl":null,"url":null,"abstract":"Low-dimensional embeddings and visualizations are an indispensable tool for analysis of high-dimensional data. State-of-the-art methods, such as T SNE and UMAP, excel in unveiling local structures hidden in high-dimensional data and are therefore routinely applied in standard analysis pipelines in biology. We show, however, that these methods fail to reconstruct local properties, such as relative differences in densities (Fig. 1) and that apparent differences in cluster size can arise from computational artifact caused by differing sample sizes (Fig. 2). Providing a theoretical analysis of this issue, we then suggest DT SNE, which approximately conserves local densities. In an extensive study on synthetic benchmark and real world data comparing against five state-of-the-art methods, we empirically show that DT - SNE provides similar global reconstruction, but yields much more accurate depictions of local distances and relative densities.","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.13732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low-dimensional embeddings and visualizations are an indispensable tool for analysis of high-dimensional data. State-of-the-art methods, such as T SNE and UMAP, excel in unveiling local structures hidden in high-dimensional data and are therefore routinely applied in standard analysis pipelines in biology. We show, however, that these methods fail to reconstruct local properties, such as relative differences in densities (Fig. 1) and that apparent differences in cluster size can arise from computational artifact caused by differing sample sizes (Fig. 2). Providing a theoretical analysis of this issue, we then suggest DT SNE, which approximately conserves local densities. In an extensive study on synthetic benchmark and real world data comparing against five state-of-the-art methods, we empirically show that DT - SNE provides similar global reconstruction, but yields much more accurate depictions of local distances and relative densities.
在低维嵌入中保持局部密度
低维嵌入和可视化是分析高维数据不可或缺的工具。最先进的方法,如tsne和UMAP,擅长揭示隐藏在高维数据中的局部结构,因此经常应用于生物学的标准分析管道。然而,我们发现,这些方法无法重建局部属性,例如密度的相对差异(图1),并且由于不同样本量引起的计算伪影可能导致簇大小的明显差异(图2)。我们对这一问题进行了理论分析,然后提出了DT SNE,它近似地保留了局部密度。在对合成基准和现实世界数据的广泛研究中,与五种最先进的方法进行了比较,我们经验地表明,DT - SNE提供了类似的全局重建,但产生了更准确的局部距离和相对密度描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信