A method for detecting miners based on helmets detection in underground coal mine videos

Cai Limei, Qian Jiansheng
{"title":"A method for detecting miners based on helmets detection in underground coal mine videos","authors":"Cai Limei,&nbsp;Qian Jiansheng","doi":"10.1016/j.mstc.2011.06.016","DOIUrl":null,"url":null,"abstract":"<div><p>In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners. This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four directional features, modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes. Out experimental results show that this method can detect helmets effectively. The detection rate was 83.7%.</p></div>","PeriodicalId":100930,"journal":{"name":"Mining Science and Technology (China)","volume":"21 4","pages":"Pages 553-556"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mstc.2011.06.016","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining Science and Technology (China)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674526411000986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners. This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four directional features, modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes. Out experimental results show that this method can detect helmets effectively. The detection rate was 83.7%.

煤矿井下视频中基于头盔检测的矿工检测方法
为了对煤矿危险区域进行自动监控,提出了从煤矿井下视频中检测安全帽来检测矿工的方法。该方法可以克服目标与背景相似度的影响。我们构建了头盔的标准图像,提取了四个方向特征,利用高斯函数对这些特征的分布进行建模,并将帧的局部图像划分为头盔和非头盔类。实验结果表明,该方法可以有效地检测出头盔。检出率为83.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信