{"title":"Performance prediction of basketball players using automated personality mining with twitter data","authors":"Dominik Siemon, Jörn Wessels","doi":"10.1108/sbm-10-2021-0119","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this paper is to use Twitter data to mine personality traits of basketball players to predict their performance in the National Basketball Association (NBA).Design/methodology/approachAutomated personality mining and robotic process automation were used to gather data (player statistics and big five personality traits) of n = 185 professional basketball players. Correlation analysis and multiple linear regressions were computed to predict the performance of their NBA careers based on previous college performance and personality traits.FindingsAutomated personality mining of Tweets can be used to gather additional information about basketball players. Extraversion, agreeableness and conscientiousness correlate with basketball performance and can be used, in combination with previous game statistics, to predict future performance.Originality/valueThe study presents a novel approach to use automated personality mining of Twitter data as a predictor for future basketball performance. The contribution advances the understanding of the importance of personality for sports performance and the use of cognitive systems (automated personality mining) and the social media data for predictions. Scouts can use our findings to enhance their recruiting criteria in a multi-million dollar business, such as the NBA.","PeriodicalId":45818,"journal":{"name":"Sport Business and Management-An International Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sport Business and Management-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/sbm-10-2021-0119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 2
Abstract
PurposeThe purpose of this paper is to use Twitter data to mine personality traits of basketball players to predict their performance in the National Basketball Association (NBA).Design/methodology/approachAutomated personality mining and robotic process automation were used to gather data (player statistics and big five personality traits) of n = 185 professional basketball players. Correlation analysis and multiple linear regressions were computed to predict the performance of their NBA careers based on previous college performance and personality traits.FindingsAutomated personality mining of Tweets can be used to gather additional information about basketball players. Extraversion, agreeableness and conscientiousness correlate with basketball performance and can be used, in combination with previous game statistics, to predict future performance.Originality/valueThe study presents a novel approach to use automated personality mining of Twitter data as a predictor for future basketball performance. The contribution advances the understanding of the importance of personality for sports performance and the use of cognitive systems (automated personality mining) and the social media data for predictions. Scouts can use our findings to enhance their recruiting criteria in a multi-million dollar business, such as the NBA.