Fault Characterization Using Advanced Seismic Interpretation Techniques–Quantitative Input for Optimal Well Placement in Structurally Complex Reservoirs
{"title":"Fault Characterization Using Advanced Seismic Interpretation Techniques–Quantitative Input for Optimal Well Placement in Structurally Complex Reservoirs","authors":"M. Etchebes, A. Bounaim, T. Brenna, D. Steckhan","doi":"10.3997/2214-4609.201900742","DOIUrl":null,"url":null,"abstract":"Summary This paper presents a set of 3D-based automated solutions that has been designed to maximize the use of seismic data to characterize structurally complex reservoirs by providing structural properties such as fault distribution, geometry, throw, fault-related rock deformation and a prognosis of fractured zone intersecting the planned well's trajectory. Such information and its associated uncertainties are critical since they can greatly improve the decision-making process while drilling as well as improve the planning of new wells in structurally complex reservoirs.","PeriodicalId":6840,"journal":{"name":"81st EAGE Conference and Exhibition 2019","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"81st EAGE Conference and Exhibition 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201900742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Summary This paper presents a set of 3D-based automated solutions that has been designed to maximize the use of seismic data to characterize structurally complex reservoirs by providing structural properties such as fault distribution, geometry, throw, fault-related rock deformation and a prognosis of fractured zone intersecting the planned well's trajectory. Such information and its associated uncertainties are critical since they can greatly improve the decision-making process while drilling as well as improve the planning of new wells in structurally complex reservoirs.