Fault Characterization Using Advanced Seismic Interpretation Techniques–Quantitative Input for Optimal Well Placement in Structurally Complex Reservoirs

M. Etchebes, A. Bounaim, T. Brenna, D. Steckhan
{"title":"Fault Characterization Using Advanced Seismic Interpretation Techniques–Quantitative Input for Optimal Well Placement in Structurally Complex Reservoirs","authors":"M. Etchebes, A. Bounaim, T. Brenna, D. Steckhan","doi":"10.3997/2214-4609.201900742","DOIUrl":null,"url":null,"abstract":"Summary This paper presents a set of 3D-based automated solutions that has been designed to maximize the use of seismic data to characterize structurally complex reservoirs by providing structural properties such as fault distribution, geometry, throw, fault-related rock deformation and a prognosis of fractured zone intersecting the planned well's trajectory. Such information and its associated uncertainties are critical since they can greatly improve the decision-making process while drilling as well as improve the planning of new wells in structurally complex reservoirs.","PeriodicalId":6840,"journal":{"name":"81st EAGE Conference and Exhibition 2019","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"81st EAGE Conference and Exhibition 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201900742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary This paper presents a set of 3D-based automated solutions that has been designed to maximize the use of seismic data to characterize structurally complex reservoirs by providing structural properties such as fault distribution, geometry, throw, fault-related rock deformation and a prognosis of fractured zone intersecting the planned well's trajectory. Such information and its associated uncertainties are critical since they can greatly improve the decision-making process while drilling as well as improve the planning of new wells in structurally complex reservoirs.
基于先进地震解释技术的断层表征——构造复杂油藏最佳井位的定量输入
本文介绍了一套基于3d的自动化解决方案,通过提供断层分布、几何形状、断层倾角、断层相关岩石变形等结构属性,以及与计划井轨迹相交的裂缝带的预测,最大限度地利用地震数据来表征结构复杂的储层。这些信息及其相关的不确定性至关重要,因为它们可以极大地改善钻井过程中的决策过程,并改善结构复杂油藏中新井的规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信