Identifying and understanding tabular material in compound documents

Q4 Computer Science
A. Laurentini, P. Viada
{"title":"Identifying and understanding tabular material in compound documents","authors":"A. Laurentini, P. Viada","doi":"10.1109/ICPR.1992.201803","DOIUrl":null,"url":null,"abstract":"Tables are important components of technical documents. This paper addresses the following problems: (i) identifying a tabular component in a scanned image of a compound document containing text, drawings, diagrams, etc.; (ii) understanding the content of the table in order to convert the table into electronic format. As far as the authors are aware, the problems addressed are new. An algorithm for performing both the above tasks has been studied and implemented. Preliminary experimental results indicate satisfactory performance for many table lay-out styles.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"69 1","pages":"405-409"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 50

Abstract

Tables are important components of technical documents. This paper addresses the following problems: (i) identifying a tabular component in a scanned image of a compound document containing text, drawings, diagrams, etc.; (ii) understanding the content of the table in order to convert the table into electronic format. As far as the authors are aware, the problems addressed are new. An algorithm for performing both the above tasks has been studied and implemented. Preliminary experimental results indicate satisfactory performance for many table lay-out styles.<>
识别和理解复合文档中的表格材料
表格是技术文档的重要组成部分。本文解决以下问题:(i)在包含文本、图纸、图表等的复合文档的扫描图像中识别表格组件;(ii)了解该表的内容,以便将该表转换为电子格式。据作者所知,这些问题都是新的。本文研究并实现了一种实现上述两种任务的算法。初步的实验结果表明,许多表格布局样式都具有令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信