Controllable optical bistability based on rotation in semiconductor micro-cavity

IF 2.9 4区 物理与天体物理 Q2 OPTICS
K. Mukherjee, Anjan Samanta, P. Jana
{"title":"Controllable optical bistability based on rotation in semiconductor micro-cavity","authors":"K. Mukherjee, Anjan Samanta, P. Jana","doi":"10.1142/s0218863521500120","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss a possibility to realize the optical bistability in a rotating semiconductor micro-cavity system. To study the mean cavity photon number profile, we have obtained stationary solution by solving Heisenberg–Langevin equations of motion. In a rotating semiconductor micro-cavity system, bistability is observed when the cavity is driven externally in one direction but not the other direction. The bistable behavior is possible for strong coupling regime, and this can be controlled by hopping strength, decay rates and pump power. The photon profile also shows tunable zero intensity window. The system may be useful to design all-optical switch and optical flip–flop i.e., optical memory element, which would be faster in applications and compact in size.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"71 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0218863521500120","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we discuss a possibility to realize the optical bistability in a rotating semiconductor micro-cavity system. To study the mean cavity photon number profile, we have obtained stationary solution by solving Heisenberg–Langevin equations of motion. In a rotating semiconductor micro-cavity system, bistability is observed when the cavity is driven externally in one direction but not the other direction. The bistable behavior is possible for strong coupling regime, and this can be controlled by hopping strength, decay rates and pump power. The photon profile also shows tunable zero intensity window. The system may be useful to design all-optical switch and optical flip–flop i.e., optical memory element, which would be faster in applications and compact in size.
基于半导体微腔旋转的可控光双稳性
本文讨论了在旋转半导体微腔系统中实现光学双稳性的可能性。为了研究平均腔光子数分布,我们通过求解海森堡-朗格万运动方程得到了稳态解。在旋转半导体微腔系统中,当腔体在一个方向外驱动而不是在另一个方向外驱动时,可以观察到双稳性。在强耦合状态下,双稳态行为是可能的,这可以通过跳频强度、衰减率和泵浦功率来控制。光子轮廓也显示可调的零强度窗口。该系统可用于设计全光开关和光触发器,即光存储元件,其应用速度更快,体积更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
48.10%
发文量
53
审稿时长
3 months
期刊介绍: This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信