M. Haghdoost, Daniel Edgington-Mitchel, C. Paschereit, K. Oberleithner
{"title":"Investigation of the Exhaust Flow of a Pulse Detonation Combustor at different Operating Conditions based on High-Speed Schlieren and PIV","authors":"M. Haghdoost, Daniel Edgington-Mitchel, C. Paschereit, K. Oberleithner","doi":"10.2514/6.2019-1512","DOIUrl":null,"url":null,"abstract":"The exhaust flow of a Pulse Detonation Combustor (PDC) is investigated for different operating conditions. The PDC consists of two units, the deflagration to detonation transition section and the exhaust tube with a straight nozzle. High-speed high-resolution schlieren images visualize the shock dynamics downstream of the nozzle. The flow dynamics during one full PDC cycle is examined via high-speed Particle Image Velocimetry. A well-suited solid tracer particle for supersonic reactive flow is determined in a preliminary study to minimize the PIV measurement error. The investigated operating conditions of the PDC differ in fill-fraction, which is the percentage of the tube filled with a reactive mixture. With increasing fill-fraction, the flow features grow in size and strength, as the propagation velocity of the leading shock increases. The blow down process of the PDC is characterized by several exhaust and suction phases. An increase in fill-fraction results in a stronger first exhaust phase, while the subsequent suction and exhaust phases remain almost unaffected.","PeriodicalId":93407,"journal":{"name":"AIAA Atmospheric Flight Mechanics Conference 2019 : papers presented at the AIAA SciTech Forum and Exposition 2019, San Diego, California, USA, 7-11 January 2019. AIAA SciTech Forum and Exposition (2019 : San Diego, Calif.)","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIAA Atmospheric Flight Mechanics Conference 2019 : papers presented at the AIAA SciTech Forum and Exposition 2019, San Diego, California, USA, 7-11 January 2019. AIAA SciTech Forum and Exposition (2019 : San Diego, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2019-1512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The exhaust flow of a Pulse Detonation Combustor (PDC) is investigated for different operating conditions. The PDC consists of two units, the deflagration to detonation transition section and the exhaust tube with a straight nozzle. High-speed high-resolution schlieren images visualize the shock dynamics downstream of the nozzle. The flow dynamics during one full PDC cycle is examined via high-speed Particle Image Velocimetry. A well-suited solid tracer particle for supersonic reactive flow is determined in a preliminary study to minimize the PIV measurement error. The investigated operating conditions of the PDC differ in fill-fraction, which is the percentage of the tube filled with a reactive mixture. With increasing fill-fraction, the flow features grow in size and strength, as the propagation velocity of the leading shock increases. The blow down process of the PDC is characterized by several exhaust and suction phases. An increase in fill-fraction results in a stronger first exhaust phase, while the subsequent suction and exhaust phases remain almost unaffected.