Antonio Prado, Xiya Cao, Xiangzhuo Ding, S. Agrawal
{"title":"Prediction of Gait Cycle Percentage Using Instrumented Shoes with Artificial Neural Networks","authors":"Antonio Prado, Xiya Cao, Xiangzhuo Ding, S. Agrawal","doi":"10.1109/ICRA40945.2020.9196747","DOIUrl":null,"url":null,"abstract":"Gait training is widely used to treat gait abnormalities. Traditional gait measurement systems are limited to instrumented laboratories. Even though gait measurements can be made in these settings, it is challenging to estimate gait parameters robustly in real-time for gait rehabilitation, especially when walking over-ground. In this paper, we present a novel approach to track the continuous gait cycle during overground walking outside the laboratory. In this approach, we instrument standard footwear with a sensorized insole and an inertial measurement unit. Artificial neural networks are used on the raw data obtained from the insoles and IMUs to compute the continuous percentage of the gait cycle for the entire walking session. We show in this paper that when tested with novel subjects, we can predict the gait cycle with a Root Mean Square Error (RMSE) of 7.2%. The onset of each cycle can be detected within an RMSE time of 41.5 ms with a 99% detection rate. The algorithm was tested with 18840 strides collected from 24 adults. In this paper, we tested a combination of fully-connected layers, an Encoder-Decoder using convolutional layers, and recurrent layers to identify an architecture that provided the best performance.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"54 1","pages":"2834-2840"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9196747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Gait training is widely used to treat gait abnormalities. Traditional gait measurement systems are limited to instrumented laboratories. Even though gait measurements can be made in these settings, it is challenging to estimate gait parameters robustly in real-time for gait rehabilitation, especially when walking over-ground. In this paper, we present a novel approach to track the continuous gait cycle during overground walking outside the laboratory. In this approach, we instrument standard footwear with a sensorized insole and an inertial measurement unit. Artificial neural networks are used on the raw data obtained from the insoles and IMUs to compute the continuous percentage of the gait cycle for the entire walking session. We show in this paper that when tested with novel subjects, we can predict the gait cycle with a Root Mean Square Error (RMSE) of 7.2%. The onset of each cycle can be detected within an RMSE time of 41.5 ms with a 99% detection rate. The algorithm was tested with 18840 strides collected from 24 adults. In this paper, we tested a combination of fully-connected layers, an Encoder-Decoder using convolutional layers, and recurrent layers to identify an architecture that provided the best performance.