Parabolic and elliptic equations with singular or degenerate coefficients: The Dirichlet problem

Hongjie Dong, T. Phan
{"title":"Parabolic and elliptic equations with singular or degenerate coefficients: The Dirichlet problem","authors":"Hongjie Dong, T. Phan","doi":"10.1090/TRAN/8397","DOIUrl":null,"url":null,"abstract":"We consider the Dirichlet problem for a class of elliptic and parabolic equations in the upper-half space $\\mathbb{R}^d_+$, where the coefficients are the product of $x_d^\\alpha, \\alpha \\in (-\\infty, 1),$ and a bounded uniformly elliptic matrix of coefficients. Thus, the coefficients are singular or degenerate near the boundary $\\{x_d =0\\}$ and they may not locally integrable. The novelty of the work is that we find proper weights under which the existence, uniqueness, and regularity of solutions in Sobolev spaces are established. These results appear to be the first of their kind and are new even if the coefficients are constant. They are also readily extended to systems of equations.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/TRAN/8397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We consider the Dirichlet problem for a class of elliptic and parabolic equations in the upper-half space $\mathbb{R}^d_+$, where the coefficients are the product of $x_d^\alpha, \alpha \in (-\infty, 1),$ and a bounded uniformly elliptic matrix of coefficients. Thus, the coefficients are singular or degenerate near the boundary $\{x_d =0\}$ and they may not locally integrable. The novelty of the work is that we find proper weights under which the existence, uniqueness, and regularity of solutions in Sobolev spaces are established. These results appear to be the first of their kind and are new even if the coefficients are constant. They are also readily extended to systems of equations.
具有奇异或退化系数的抛物型和椭圆型方程:狄利克雷问题
考虑了上半空间$\mathbb{R}^d_+$上的一类椭圆型和抛物型方程的Dirichlet问题,其中系数是$x_d^\alpha, \alpha \in (-\infty, 1),$与有界一致椭圆型系数矩阵的乘积。因此,系数在边界$\{x_d =0\}$附近是奇异的或退化的,它们可能不是局部可积的。该工作的新颖之处在于我们找到了适当的权值,在此权值下建立了Sobolev空间中解的存在性、唯一性和正则性。这些结果似乎是同类中的第一个,即使系数是恒定的,也是新的。它们也很容易推广到方程组中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信