Derandomization of Cell Sampling

Alexander Golovnev, Tom Gur, Igor Shinkar
{"title":"Derandomization of Cell Sampling","authors":"Alexander Golovnev, Tom Gur, Igor Shinkar","doi":"10.1137/1.9781611977585.ch26","DOIUrl":null,"url":null,"abstract":"Since 1989, the best known lower bound on static data structures was Siegel's classical cell sampling lower bound. Siegel showed an explicit problem with $n$ inputs and $m$ possible queries such that every data structure that answers queries by probing $t$ memory cells requires space $s\\geq\\widetilde{\\Omega}\\left(n\\cdot(\\frac{m}{n})^{1/t}\\right)$. In this work, we improve this bound for non-adaptive data structures to $s\\geq\\widetilde{\\Omega}\\left(n\\cdot(\\frac{m}{n})^{1/(t-1)}\\right)$ for all $t \\geq 2$. For $t=2$, we give a lower bound of $s>m-o(m)$, improving on the bound $s>m/2$ recently proved by Viola over $\\mathbb{F}_2$ and Siegel's bound $s\\geq\\widetilde{\\Omega}(\\sqrt{mn})$ over other finite fields.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"60 1","pages":"278-284"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977585.ch26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since 1989, the best known lower bound on static data structures was Siegel's classical cell sampling lower bound. Siegel showed an explicit problem with $n$ inputs and $m$ possible queries such that every data structure that answers queries by probing $t$ memory cells requires space $s\geq\widetilde{\Omega}\left(n\cdot(\frac{m}{n})^{1/t}\right)$. In this work, we improve this bound for non-adaptive data structures to $s\geq\widetilde{\Omega}\left(n\cdot(\frac{m}{n})^{1/(t-1)}\right)$ for all $t \geq 2$. For $t=2$, we give a lower bound of $s>m-o(m)$, improving on the bound $s>m/2$ recently proved by Viola over $\mathbb{F}_2$ and Siegel's bound $s\geq\widetilde{\Omega}(\sqrt{mn})$ over other finite fields.
细胞抽样的非随机化
自1989年以来,最著名的静态数据结构下界是西格尔的经典单元抽样下界。西格尔展示了一个关于$n$输入和$m$可能查询的显式问题,这样每个通过探测$t$内存单元来回答查询的数据结构都需要空间$s\geq\widetilde{\Omega}\left(n\cdot(\frac{m}{n})^{1/t}\right)$。在这项工作中,我们将所有$t \geq 2$的非自适应数据结构的边界改进为$s\geq\widetilde{\Omega}\left(n\cdot(\frac{m}{n})^{1/(t-1)}\right)$。对于$t=2$,我们给出了$s>m-o(m)$的下界,改进了Viola最近在$\mathbb{F}_2$上证明的下界$s>m/2$和Siegel在其他有限域上证明的下界$s\geq\widetilde{\Omega}(\sqrt{mn})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信