Mechanical properties of thermoformed multilayer parts containing non thermoformable materials

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Lisa-Maria Wittmann, D. Drummer
{"title":"Mechanical properties of thermoformed multilayer parts containing non thermoformable materials","authors":"Lisa-Maria Wittmann, D. Drummer","doi":"10.1177/87560879221093977","DOIUrl":null,"url":null,"abstract":"Different viscous materials were chosen to simulate the behavior of degraded materials in the thermoforming process and to demonstrate the potential of using multilayer sheets for thermoforming non thermoformable materials without losing final part performance. The mechanical properties of thermoformed multilayer sheets with 3, 22, and 50 melt flow index (MFI) polypropylenes (PP) were investigated. Therefore, a thermoformable material (MFI-3) and difficult/non thermoformable (MFI-22 and MFI-50) material was combined in the bilayer sheet. The extruded bilayer sheets had equal layer thicknesses (A/B 50%/50%) and unequal layer thicknesses (A/B 70%/30%), whereby B is always the material difficult to thermoform. As the non thermoformable material can lead to inhomogenity in the wall thickness and therefore can cause different part performance, the investigation focused on how the non thermoformable material influenced the mechanical performance of the final part. This labortory scale thermoformability investigation of the extruded PP sheets with different viscosities showed that the low viscous layer position has only a marginal influence on the general mechanical properties of the thermoformed parts. The mechanical properties can be predicted more precisely by the mechanical properties of the thermoformable material used than by the rule of mixtures. Whereas the Young’s modulus and yield stress change only negligibly, the elongation at break after thermoforming significantly increases with the stable component.","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":"92 1","pages":"608 - 628"},"PeriodicalIF":2.1000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/87560879221093977","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

Different viscous materials were chosen to simulate the behavior of degraded materials in the thermoforming process and to demonstrate the potential of using multilayer sheets for thermoforming non thermoformable materials without losing final part performance. The mechanical properties of thermoformed multilayer sheets with 3, 22, and 50 melt flow index (MFI) polypropylenes (PP) were investigated. Therefore, a thermoformable material (MFI-3) and difficult/non thermoformable (MFI-22 and MFI-50) material was combined in the bilayer sheet. The extruded bilayer sheets had equal layer thicknesses (A/B 50%/50%) and unequal layer thicknesses (A/B 70%/30%), whereby B is always the material difficult to thermoform. As the non thermoformable material can lead to inhomogenity in the wall thickness and therefore can cause different part performance, the investigation focused on how the non thermoformable material influenced the mechanical performance of the final part. This labortory scale thermoformability investigation of the extruded PP sheets with different viscosities showed that the low viscous layer position has only a marginal influence on the general mechanical properties of the thermoformed parts. The mechanical properties can be predicted more precisely by the mechanical properties of the thermoformable material used than by the rule of mixtures. Whereas the Young’s modulus and yield stress change only negligibly, the elongation at break after thermoforming significantly increases with the stable component.
含非热成型材料的热成型多层零件的机械性能
选择不同的粘性材料来模拟退化材料在热成型过程中的行为,并展示了在不损失最终零件性能的情况下使用多层板材热成型非热成型材料的潜力。研究了熔体流动指数(MFI)为3、22和50的聚丙烯(PP)热成型多层板的力学性能。因此,将热成型材料(MFI-3)和难/非热成型材料(MFI-22和MFI-50)结合在双层片材中。挤出的双层片材具有等层厚度(A/B 50%/50%)和不等层厚度(A/B 70%/30%),其中B总是难以热成型的材料。由于非热成型材料会导致壁厚的不均匀性,从而导致零件性能的不同,因此研究重点是非热成型材料如何影响最终零件的力学性能。对不同粘度的挤出PP板材进行了实验室规模的热成形性研究,结果表明,低粘层位置对热成形件的一般力学性能影响很小。用热成型材料的力学性能比用混合规律能更精确地预测材料的力学性能。而杨氏模量和屈服应力的变化可以忽略不计,热成形后的断裂伸长率随着稳定成分的增加而显著增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plastic Film & Sheeting
Journal of Plastic Film & Sheeting 工程技术-材料科学:膜
CiteScore
6.00
自引率
16.10%
发文量
33
审稿时长
>12 weeks
期刊介绍: The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信