{"title":"Tracy–Widom law for the largest eigenvalue of sample covariance matrix generated by VARMA","authors":"Boping Tian, Yangchun Zhang, Wang Zhou","doi":"10.1142/s2010326321500222","DOIUrl":null,"url":null,"abstract":"In this paper, we derive the Tracy–Widom law for the largest eigenvalue of sample covariance matrix generated by the vector autoregressive moving average model when the dimension is comparable to the sample size. This result is applied to make inference on the vector autoregressive moving average model. Simulations are conducted to demonstrate the finite sample performance of our inference.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"42 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326321500222","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, we derive the Tracy–Widom law for the largest eigenvalue of sample covariance matrix generated by the vector autoregressive moving average model when the dimension is comparable to the sample size. This result is applied to make inference on the vector autoregressive moving average model. Simulations are conducted to demonstrate the finite sample performance of our inference.
期刊介绍:
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.
Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.
Special issues devoted to single topic of current interest will also be considered and published in this journal.