Weighted Eigenvalue Problem Approach To The Critical Value Determination Of Screened Coulomb Potential Systems

Metin Demiralp
{"title":"Weighted Eigenvalue Problem Approach To The Critical Value Determination Of Screened Coulomb Potential Systems","authors":"Metin Demiralp","doi":"10.1002/anac.200310022","DOIUrl":null,"url":null,"abstract":"<p>In this work, the radial time-independent Schrödinger equation of a screened Coulomb potential system at the zero energy limit is first converted to a weighted eigenvalue problem of an ordinary differential operator. Then, by using an appropriate coordinate transformation, the differential equation is transformed into a form whose first and second order derivative related terms become same as the Extended Jacobi Polynomials' differential equation's corresponding terms. Only difference is the appearance of a multiplicative operator which can be considered as an effective potential. Work focuses on the point whether the solution is obtained easily depending on the structure of this potential. In this direction a screened Coulomb potential with a specific rational screening function is considered. The analytical solutions for the critical values of the screening parameter and the form of the wave function at the threshold of the continous spectrum are obtained. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 1","pages":"251-259"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200310022","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, the radial time-independent Schrödinger equation of a screened Coulomb potential system at the zero energy limit is first converted to a weighted eigenvalue problem of an ordinary differential operator. Then, by using an appropriate coordinate transformation, the differential equation is transformed into a form whose first and second order derivative related terms become same as the Extended Jacobi Polynomials' differential equation's corresponding terms. Only difference is the appearance of a multiplicative operator which can be considered as an effective potential. Work focuses on the point whether the solution is obtained easily depending on the structure of this potential. In this direction a screened Coulomb potential with a specific rational screening function is considered. The analytical solutions for the critical values of the screening parameter and the form of the wave function at the threshold of the continous spectrum are obtained. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

筛选库仑势系统临界值确定的加权特征值问题方法
在这项工作中,首先将屏蔽库仑势系统在零能量极限下的径向时间无关Schrödinger方程转换为常微分算子的加权特征值问题。然后,通过适当的坐标变换,将微分方程转化为一阶和二阶导数相关项与扩展雅可比多项式微分方程对应项相同的形式。唯一的区别是出现了一个可以被认为是有效势的乘法算子。工作的重点是解是否容易得到取决于这个势的结构。在这个方向上考虑具有特定有理屏蔽函数的屏蔽库仑势。得到了筛选参数临界值的解析解和连续谱阈值处的波函数形式。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信