{"title":"A domain-theoretic approach to Brownian motion and general continuous stochastic processes","authors":"Paul Bilokon, A. Edalat","doi":"10.1145/2603088.2603102","DOIUrl":null,"url":null,"abstract":"We introduce a domain-theoretic framework for continuous-time, continuous-state stochastic processes. The laws of stochastic processes are embedded into the space of maximal elements of the normalised probabilistic power domain on the space of continuous interval-valued functions endowed with the relative Scott topology. We use the resulting ω-continuous bounded complete dcpo to define partial stochastic processes and characterise their computability. For a given continuous stochastic process, we show how its domain-theoretic, i.e., finitary, approximations can be constructed, whose least upper bound is the law of the stochastic process. As a main result, we apply our methodology to Brownian motion. We construct a partial Wiener measure and show that the Wiener measure is computable within the domain-theoretic framework.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We introduce a domain-theoretic framework for continuous-time, continuous-state stochastic processes. The laws of stochastic processes are embedded into the space of maximal elements of the normalised probabilistic power domain on the space of continuous interval-valued functions endowed with the relative Scott topology. We use the resulting ω-continuous bounded complete dcpo to define partial stochastic processes and characterise their computability. For a given continuous stochastic process, we show how its domain-theoretic, i.e., finitary, approximations can be constructed, whose least upper bound is the law of the stochastic process. As a main result, we apply our methodology to Brownian motion. We construct a partial Wiener measure and show that the Wiener measure is computable within the domain-theoretic framework.