Effective Bounds for Restricted 3-Arithmetic Progressions in Fpn

Amey Bhangale, Subhash Khot, Dor Minzer
{"title":"Effective Bounds for Restricted 3-Arithmetic Progressions in Fpn","authors":"Amey Bhangale, Subhash Khot, Dor Minzer","doi":"10.48550/arXiv.2308.06600","DOIUrl":null,"url":null,"abstract":"For a prime $p$, a restricted arithmetic progression in $\\mathbb{F}_p^n$ is a triplet of vectors $x, x+a, x+2a$ in which the common difference $a$ is a non-zero element from $\\{0,1,2\\}^n$. What is the size of the largest $A\\subseteq \\mathbb{F}_p^n$ that is free of restricted arithmetic progressions? We show that the density of any such set is at most $\\frac{C}{(\\log\\log\\log n)^c}$, where $c,C>0$ depend only on $p$, giving the first reasonable bounds for the density of such sets. Previously, the best known bound was $O(1/\\log^{*} n)$, which follows from the density Hales-Jewett theorem.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2308.06600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a prime $p$, a restricted arithmetic progression in $\mathbb{F}_p^n$ is a triplet of vectors $x, x+a, x+2a$ in which the common difference $a$ is a non-zero element from $\{0,1,2\}^n$. What is the size of the largest $A\subseteq \mathbb{F}_p^n$ that is free of restricted arithmetic progressions? We show that the density of any such set is at most $\frac{C}{(\log\log\log n)^c}$, where $c,C>0$ depend only on $p$, giving the first reasonable bounds for the density of such sets. Previously, the best known bound was $O(1/\log^{*} n)$, which follows from the density Hales-Jewett theorem.
Fpn中受限3等差数列的有效界
对于质数$p$, $\mathbb{F}_p^n$中的限制等差数列是一个向量的三元组$x, x+a, x+2a$,其中的公差$a$是$\{0,1,2\}^n$中的一个非零元素。没有限制等差数列的最大的$A\subseteq \mathbb{F}_p^n$的大小是多少?我们证明了任何这样的集合的密度不超过$\frac{C}{(\log\log\log n)^c}$,其中$c,C>0$只依赖于$p$,给出了这样的集合的密度的第一个合理界限。在此之前,最著名的界是$O(1/\log^{*} n)$,它由密度Hales-Jewett定理推导而来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信