S. Melnikov, N. Vershigora, Alexander Alexandrovich Groo, D. Grigorev, Pavel Yurievich Kiselev, V. Morozov
{"title":"An Improved Methodology for Gas-Condensate Cluster Evaluations under Uncertainty","authors":"S. Melnikov, N. Vershigora, Alexander Alexandrovich Groo, D. Grigorev, Pavel Yurievich Kiselev, V. Morozov","doi":"10.2118/206572-ms","DOIUrl":null,"url":null,"abstract":"\n A decision to buy oil and gas assets requires a project evaluation (PE) aimed at integrated calculation of numerous possible scenarios of asset development, based on the uncertain resource values, variety of geological exploration program events, the most preferable decisions about the oil field development in the current economic conditions.\n The vast amount of calculations determined by the probabilistic nature of the PE and specific timeframes require optimization of the current approaches based on the balance between accuracy and time. This issue is particularly relevant for the evaluation and analysis of gas or gas-condensate field cluster as the profitability of the project can be concentrated in the asset integration into one production cluster. Such option as well as proposal to gather separate fields to the common infrastructure, sequence of fields development with different geological and physical characteristics, calculations of a large number of synergy options, etc. require the multi-disciplinary team to think outside the box while searching for a business case. Thus, this paper is aimed to improve current approaches and the current tools adaptation which will be used to drastically automate cross-functional probability estimate of gas field cluster with technical and economic justification of sustainable integrated solutions.\n The results were successfully validated within PE of several perspective gas condensate projects focused on the possibility of integration of the fields into a single cluster that creates additional value from the optimization of the project solutions (exploration, development strategy, gathering and transportation of hydrocarbons, monetization of the products) equal to tens of billions of rubles in a limited period of time.","PeriodicalId":11177,"journal":{"name":"Day 4 Fri, October 15, 2021","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Fri, October 15, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206572-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A decision to buy oil and gas assets requires a project evaluation (PE) aimed at integrated calculation of numerous possible scenarios of asset development, based on the uncertain resource values, variety of geological exploration program events, the most preferable decisions about the oil field development in the current economic conditions.
The vast amount of calculations determined by the probabilistic nature of the PE and specific timeframes require optimization of the current approaches based on the balance between accuracy and time. This issue is particularly relevant for the evaluation and analysis of gas or gas-condensate field cluster as the profitability of the project can be concentrated in the asset integration into one production cluster. Such option as well as proposal to gather separate fields to the common infrastructure, sequence of fields development with different geological and physical characteristics, calculations of a large number of synergy options, etc. require the multi-disciplinary team to think outside the box while searching for a business case. Thus, this paper is aimed to improve current approaches and the current tools adaptation which will be used to drastically automate cross-functional probability estimate of gas field cluster with technical and economic justification of sustainable integrated solutions.
The results were successfully validated within PE of several perspective gas condensate projects focused on the possibility of integration of the fields into a single cluster that creates additional value from the optimization of the project solutions (exploration, development strategy, gathering and transportation of hydrocarbons, monetization of the products) equal to tens of billions of rubles in a limited period of time.