{"title":"Heat-Aging Effects on the Material Properties and Fatigue Life Prediction of Vulcanized Natural Rubber","authors":"C. Woo, W. Kim","doi":"10.2324/EJSM.2.7","DOIUrl":null,"url":null,"abstract":"The fatigue analysis and lifetime evaluation are very important in design procedure to assure the safety and reliability of the rubber components. Heat-aging process affects not only the material properties but also the fatigue life of vulcanized natural rubber. In this paper, the heat-aging effects on the material properties and fatigue life prediction of natural rubber were experimentally investigated. The stress-strain curves were obtained from the results of tensile test. The rubber specimens were heat-aged in an oven at the temperature ranging from 50°C to 100°C for a period ranging from 1 day to 90 days. Fatigue life prediction methodology of vulcanized natural rubber was proposed by incorporating the finite element analysis and fatigue damage parameter determined from fatigue test. Fatigue life tests were performed using the 3-dimensional dumbbell specimen, which were aged in different amounts. The Green-Lagrange strain at the critical location determined from the finite element method used for evaluating the fatigue damage parameter. Fatigue life prediction equation effectively represented by a single function using the Green-Lagrange strain.","PeriodicalId":11628,"journal":{"name":"E-journal of Soft Materials","volume":"67 1","pages":"7-12"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-journal of Soft Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2324/EJSM.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The fatigue analysis and lifetime evaluation are very important in design procedure to assure the safety and reliability of the rubber components. Heat-aging process affects not only the material properties but also the fatigue life of vulcanized natural rubber. In this paper, the heat-aging effects on the material properties and fatigue life prediction of natural rubber were experimentally investigated. The stress-strain curves were obtained from the results of tensile test. The rubber specimens were heat-aged in an oven at the temperature ranging from 50°C to 100°C for a period ranging from 1 day to 90 days. Fatigue life prediction methodology of vulcanized natural rubber was proposed by incorporating the finite element analysis and fatigue damage parameter determined from fatigue test. Fatigue life tests were performed using the 3-dimensional dumbbell specimen, which were aged in different amounts. The Green-Lagrange strain at the critical location determined from the finite element method used for evaluating the fatigue damage parameter. Fatigue life prediction equation effectively represented by a single function using the Green-Lagrange strain.