Characterization of Ductile Phase Toughening Mechanisms in a Hot-Rolled Tungsten Heavy Alloy

J. V. Haag, David Edwards, C. Henager, W. Setyawan, Jing Wang, M. Murayama
{"title":"Characterization of Ductile Phase Toughening Mechanisms in a Hot-Rolled Tungsten Heavy Alloy","authors":"J. V. Haag, David Edwards, C. Henager, W. Setyawan, Jing Wang, M. Murayama","doi":"10.2139/ssrn.3683518","DOIUrl":null,"url":null,"abstract":"Abstract Tungsten heavy alloys (WHAs) are a type of ductile phase toughened alloy that are becoming increasingly interesting as an alternative to polycrystalline tungsten for fusion reactor plasma facing material components due to their balanced strength and ductility. To justify their use in the extremely harsh environment of a fusion reactor, understanding detailed microstructural features of WHAs associated with their mechanical property changes is necessary. A 90W-7Ni-3Fe WHA alloy has been chosen to investigate the effect of thermomechanical treatment and microstructural manipulation on the overall effectiveness of deformation accommodation in these bi-phase metallic composites. Both in-situ tensile testing and 3D microstructural analysis of the samples reveal a predominance of microcracking at tungsten grain boundaries that are blunted and arrested by the ductile phase, while there remains little to no instances of interfacial debonding. Thermomechanical treatment of this alloy is found to alter the spherical brittle phase domains into elongated plates, drastically reducing the ductile phase connectivity, and changing the nature of material deformation. Characterization of the ductile phase toughening mechanisms in these materials has provided deeper insight into the underlying physics governing material behavior in these alloys; revealing a surprising interfacial strength between the different phases.","PeriodicalId":18300,"journal":{"name":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3683518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Abstract Tungsten heavy alloys (WHAs) are a type of ductile phase toughened alloy that are becoming increasingly interesting as an alternative to polycrystalline tungsten for fusion reactor plasma facing material components due to their balanced strength and ductility. To justify their use in the extremely harsh environment of a fusion reactor, understanding detailed microstructural features of WHAs associated with their mechanical property changes is necessary. A 90W-7Ni-3Fe WHA alloy has been chosen to investigate the effect of thermomechanical treatment and microstructural manipulation on the overall effectiveness of deformation accommodation in these bi-phase metallic composites. Both in-situ tensile testing and 3D microstructural analysis of the samples reveal a predominance of microcracking at tungsten grain boundaries that are blunted and arrested by the ductile phase, while there remains little to no instances of interfacial debonding. Thermomechanical treatment of this alloy is found to alter the spherical brittle phase domains into elongated plates, drastically reducing the ductile phase connectivity, and changing the nature of material deformation. Characterization of the ductile phase toughening mechanisms in these materials has provided deeper insight into the underlying physics governing material behavior in these alloys; revealing a surprising interfacial strength between the different phases.
热轧重钨合金韧性相增韧机理的研究
重钨合金(WHAs)是一种韧性相增韧合金,由于其平衡的强度和延展性,作为多晶钨的替代品,越来越受到人们的关注。为了证明它们在核聚变反应堆的极端恶劣环境中使用是合理的,有必要了解与它们的机械性能变化相关的WHAs的详细微观结构特征。选择90W-7Ni-3Fe WHA合金,研究了热处理和显微组织处理对这些双相金属复合材料整体变形调节效能的影响。原位拉伸测试和样品的三维显微组织分析都表明,钨晶界的微裂纹主要是由韧性相钝化和阻止的,而界面脱粘的情况很少或没有。对该合金进行热处理可以将其球形脆性相域转变为细长的片状,大大降低了韧性相的连通性,并改变了材料变形的性质。表征这些材料中的韧性相增韧机制提供了对这些合金中控制材料行为的潜在物理的更深入的了解;揭示了不同相之间惊人的界面强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信