PoseGU: 3D Human Pose Estimation with Novel Human Pose Generator and Unbiased Learning

S. Guan, Haiyan Lu, Linchao Zhu, Gengfa Fang
{"title":"PoseGU: 3D Human Pose Estimation with Novel Human Pose Generator and Unbiased Learning","authors":"S. Guan, Haiyan Lu, Linchao Zhu, Gengfa Fang","doi":"10.48550/arXiv.2207.03618","DOIUrl":null,"url":null,"abstract":"3D pose estimation has recently gained substantial interests in computer vision domain. Existing 3D pose estimation methods have a strong reliance on large size well-annotated 3D pose datasets, and they suffer poor model generalization on unseen poses due to limited diversity of 3D poses in training sets. In this work, we propose PoseGU, a novel human pose generator that generates diverse poses with access only to a small size of seed samples, while equipping the Counterfactual Risk Minimization to pursue an unbiased evaluation objective. Extensive experiments demonstrate PoseGU outforms almost all the state-of-the-art 3D human pose methods under consideration over three popular benchmark datasets. Empirical analysis also proves PoseGU generates 3D poses with improved data diversity and better generalization ability.","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":"84 1","pages":"103715"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Vis. Image Underst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.03618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

3D pose estimation has recently gained substantial interests in computer vision domain. Existing 3D pose estimation methods have a strong reliance on large size well-annotated 3D pose datasets, and they suffer poor model generalization on unseen poses due to limited diversity of 3D poses in training sets. In this work, we propose PoseGU, a novel human pose generator that generates diverse poses with access only to a small size of seed samples, while equipping the Counterfactual Risk Minimization to pursue an unbiased evaluation objective. Extensive experiments demonstrate PoseGU outforms almost all the state-of-the-art 3D human pose methods under consideration over three popular benchmark datasets. Empirical analysis also proves PoseGU generates 3D poses with improved data diversity and better generalization ability.
PoseGU:基于新型人体姿态生成器和无偏学习的三维人体姿态估计
近年来,三维姿态估计在计算机视觉领域引起了广泛的关注。现有的三维姿态估计方法强烈依赖于大规模的、注释良好的三维姿态数据集,并且由于训练集中三维姿态的多样性有限,它们对未见姿态的模型泛化能力较差。在这项工作中,我们提出了PoseGU,这是一种新型的人体姿势生成器,它可以在只访问少量种子样本的情况下生成多种姿势,同时配备反事实风险最小化来追求公正的评估目标。大量的实验表明,在三个流行的基准数据集上,PoseGU优于几乎所有最先进的3D人体姿势方法。实证分析也证明了PoseGU生成的三维姿态具有更好的数据多样性和泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信