Miao He, Xijun Fu, Guitao Du, Houbin Li, Pingping Zhao, Xinghai Liu
{"title":"Preparation of biomass water‐soluble carbon quantum dots and their application in Cr (VI) ions detection","authors":"Miao He, Xijun Fu, Guitao Du, Houbin Li, Pingping Zhao, Xinghai Liu","doi":"10.1002/pts.2721","DOIUrl":null,"url":null,"abstract":"To quickly and quantitatively detect the concentration of harmful Cr6+ in food and packaging, biomass nitrogen‐doped blue fluorescent carbon quantum dots (CQDs) were synthesized by a one‐step hydrothermal method using longan peel. The synthesized biomass CQDs are spherical, and the particle size is distributed between 1 and 6 nm. There are functional groups such as carboxyl, hydroxyl and amino groups on the surface of the CQDs, which promotes the excellent water dispersibility of the CQDs. CQDs have good fluorescence stability in salt solutions, different pH environments and long‐term storage. A fluorescence sensor for detecting Cr6+ was constructed, based on the specific quenching effect of Cr6+ on the fluorescence of CQDs. There is a good linear relationship between the fluorescence quenching rate of the fluorescence sensor and the Cr6+ concentration of the detected sample. The sensor has a linear range of 20–200 μM and a detection limit of 1.4 μM. In addition, the CQDs fluorescence sensor has an ideal recovery rate in the actual water sample spiked with Cr6+. This research innovatively combined longan and hydrothermal method to prepare a quantitative, fast and wide detection limit Cr6+ sensor.","PeriodicalId":19626,"journal":{"name":"Packaging Technology and Science","volume":"165 1","pages":"465 - 472"},"PeriodicalIF":2.8000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Packaging Technology and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pts.2721","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1
Abstract
To quickly and quantitatively detect the concentration of harmful Cr6+ in food and packaging, biomass nitrogen‐doped blue fluorescent carbon quantum dots (CQDs) were synthesized by a one‐step hydrothermal method using longan peel. The synthesized biomass CQDs are spherical, and the particle size is distributed between 1 and 6 nm. There are functional groups such as carboxyl, hydroxyl and amino groups on the surface of the CQDs, which promotes the excellent water dispersibility of the CQDs. CQDs have good fluorescence stability in salt solutions, different pH environments and long‐term storage. A fluorescence sensor for detecting Cr6+ was constructed, based on the specific quenching effect of Cr6+ on the fluorescence of CQDs. There is a good linear relationship between the fluorescence quenching rate of the fluorescence sensor and the Cr6+ concentration of the detected sample. The sensor has a linear range of 20–200 μM and a detection limit of 1.4 μM. In addition, the CQDs fluorescence sensor has an ideal recovery rate in the actual water sample spiked with Cr6+. This research innovatively combined longan and hydrothermal method to prepare a quantitative, fast and wide detection limit Cr6+ sensor.
期刊介绍:
Packaging Technology & Science publishes original research, applications and review papers describing significant, novel developments in its field.
The Journal welcomes contributions in a wide range of areas in packaging technology and science, including:
-Active packaging
-Aseptic and sterile packaging
-Barrier packaging
-Design methodology
-Environmental factors and sustainability
-Ergonomics
-Food packaging
-Machinery and engineering for packaging
-Marketing aspects of packaging
-Materials
-Migration
-New manufacturing processes and techniques
-Testing, analysis and quality control
-Transport packaging