{"title":"Polarization Resolution of LISA","authors":"O. Jennrich, M. Peterseim, K. Danzmann","doi":"10.1109/EQEC.1996.561948","DOIUrl":null,"url":null,"abstract":"We discuss LISA's ability to resolve different polarizational states of a gravitational wave with fixed frequency and amplitude. Assuming a binary as the source of the gravitational wave, its orientation is connected with the polarization of the gravitational wave emitted. Using methods of signal processing, we calculate the 1- uncertainty range for measuring the orientation of the source.","PeriodicalId":11780,"journal":{"name":"EQEC'96. 1996 European Quantum Electronic Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1997-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EQEC'96. 1996 European Quantum Electronic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EQEC.1996.561948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We discuss LISA's ability to resolve different polarizational states of a gravitational wave with fixed frequency and amplitude. Assuming a binary as the source of the gravitational wave, its orientation is connected with the polarization of the gravitational wave emitted. Using methods of signal processing, we calculate the 1- uncertainty range for measuring the orientation of the source.