Two-Level Content-Based Endoscope Image Retrieval

Quan Zhang, Xiaoying Tai, Yi-hong Dong, Shanliang Pan, Xin Luo, K. Kita
{"title":"Two-Level Content-Based Endoscope Image Retrieval","authors":"Quan Zhang, Xiaoying Tai, Yi-hong Dong, Shanliang Pan, Xin Luo, K. Kita","doi":"10.1109/ICNC.2008.502","DOIUrl":null,"url":null,"abstract":"Based on the analysis of endoscope image, in this paper, a new color quantification method is proposed to extract improved CCV and the V component shape invariant moment achieving image feature base. Inspiring from general information searching, the two-level content-based endoscope image retrieval is represented using the improved CCV and V component shape invariant moment guaranteeing the first retrieval recall. Experiments prove the efficiency of these methods.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"36 1","pages":"208-212"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the analysis of endoscope image, in this paper, a new color quantification method is proposed to extract improved CCV and the V component shape invariant moment achieving image feature base. Inspiring from general information searching, the two-level content-based endoscope image retrieval is represented using the improved CCV and V component shape invariant moment guaranteeing the first retrieval recall. Experiments prove the efficiency of these methods.
基于二级内容的内窥镜图像检索
本文在分析内窥镜图像的基础上,提出了一种新的颜色量化方法来提取改进的CCV和V分量形状不变矩,实现图像特征库。在一般信息检索的启发下,利用改进的CCV和V分量形状不变矩来表示基于两级内容的内窥镜图像检索,保证了第一次检索的召回率。实验证明了这些方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信