Renormalized energies for unit-valued harmonic maps in multiply connected domains

Rémy Rodiac, Pa'ul Ubill'us
{"title":"Renormalized energies for unit-valued harmonic maps in multiply connected domains","authors":"Rémy Rodiac, Pa'ul Ubill'us","doi":"10.3233/ASY-211712","DOIUrl":null,"url":null,"abstract":"In this article we derive the expression of \\textit{renormalized energies} for unit-valued harmonic maps defined on a smooth bounded domain in \\(\\mathbb{R}^2\\) whose boundary has several connected components. The notion of renormalized energies was introduced by Bethuel-Brezis-Helein in order to describe the position of limiting Ginzburg-Landau vortices in simply connected domains. We show here, how a non-trivial topology of the domain modifies the expression of the renormalized energies. We treat the case of Dirichlet boundary conditions and Neumann boundary conditions as well.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-211712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article we derive the expression of \textit{renormalized energies} for unit-valued harmonic maps defined on a smooth bounded domain in \(\mathbb{R}^2\) whose boundary has several connected components. The notion of renormalized energies was introduced by Bethuel-Brezis-Helein in order to describe the position of limiting Ginzburg-Landau vortices in simply connected domains. We show here, how a non-trivial topology of the domain modifies the expression of the renormalized energies. We treat the case of Dirichlet boundary conditions and Neumann boundary conditions as well.
多连通域中单位调和映射的重正化能量
本文导出了定义在\(\mathbb{R}^2\)光滑有界域上的单位值调和映射的\textit{重整化能量}表达式,该映射的边界有几个连通分量。为了描述单连通域中极限金兹堡-朗道涡的位置,Bethuel-Brezis-Helein引入了重正化能量的概念。我们在这里展示,域的非平凡拓扑如何改变重整化能量的表达式。我们也讨论了狄利克雷边界条件和诺伊曼边界条件的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信