{"title":"High Performance Post-Quantum Key Exchange on FPGAs","authors":"Po-Chun Kuo, Yu-Wei Chen, Yuan-Che Hsu, Chen-Mou Cheng, Wen-Ding Li, Bo-Yin Yang","doi":"10.6688/JISE.202109_37(5).0015","DOIUrl":null,"url":null,"abstract":"Lattice-based cryptography is a highly potential candidate that protects against the threats of quantum attack. At Usenix Security 2016, Alkim, Ducas, Popplemann, and Schwabe proposed a post-quantum key exchange scheme called NewHope, based on a variant of lattice problem, the ring-learning-with-errors (RLWE) problem. In this work, we propose a high performance hardware architecture for NewHope. Our implementation requires 6,680 slices, 9,412 FFs, 18,756 LUTs, 8 DSPs and 14 BRAMs on Xilinx Zynq-7000 equipped with 28mm Artix-7 7020 FPGA. In our hardware design of NewHope key exchange, the three phases of key exchange costs 51.9, 78.6 and 21.1 μs, respectively. It achieves more than 4.8 times better in terms of area-time product compared to previous results of hardware implementation of NewHope-Simple from Oder and Guneysu at Latin-crypt 2017.","PeriodicalId":50177,"journal":{"name":"Journal of Information Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.6688/JISE.202109_37(5).0015","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 46
Abstract
Lattice-based cryptography is a highly potential candidate that protects against the threats of quantum attack. At Usenix Security 2016, Alkim, Ducas, Popplemann, and Schwabe proposed a post-quantum key exchange scheme called NewHope, based on a variant of lattice problem, the ring-learning-with-errors (RLWE) problem. In this work, we propose a high performance hardware architecture for NewHope. Our implementation requires 6,680 slices, 9,412 FFs, 18,756 LUTs, 8 DSPs and 14 BRAMs on Xilinx Zynq-7000 equipped with 28mm Artix-7 7020 FPGA. In our hardware design of NewHope key exchange, the three phases of key exchange costs 51.9, 78.6 and 21.1 μs, respectively. It achieves more than 4.8 times better in terms of area-time product compared to previous results of hardware implementation of NewHope-Simple from Oder and Guneysu at Latin-crypt 2017.
期刊介绍:
The Journal of Information Science and Engineering is dedicated to the dissemination of information on computer science, computer engineering, and computer systems. This journal encourages articles on original research in the areas of computer hardware, software, man-machine interface, theory and applications. tutorial papers in the above-mentioned areas, and state-of-the-art papers on various aspects of computer systems and applications.