{"title":"Efficient low-frequency integral equation solver for wireless power transfer modeling","authors":"Yin Li, Sheng Sun","doi":"10.1109/IMWS-BIO.2013.6756141","DOIUrl":null,"url":null,"abstract":"In this paper, the wireless power transfer system based on magnetic-coupled resonators is modeled and optimized by using low-frequency integral equation solver. For the low-frequency transfer system, the mesh size after discretization is usually much smaller than the wavelength. Hence, the low-frequency solvers are proposed to model this kind of structures with tiny meshes. After the spiral resonators are determined at specific frequency, we only need to optimize the distance between resonators and two loops. The numerical results show that we are no need to re-mesh the whole transfer system during the distance searching procedure, and the optimized distance can be easily obtained.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"23 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the wireless power transfer system based on magnetic-coupled resonators is modeled and optimized by using low-frequency integral equation solver. For the low-frequency transfer system, the mesh size after discretization is usually much smaller than the wavelength. Hence, the low-frequency solvers are proposed to model this kind of structures with tiny meshes. After the spiral resonators are determined at specific frequency, we only need to optimize the distance between resonators and two loops. The numerical results show that we are no need to re-mesh the whole transfer system during the distance searching procedure, and the optimized distance can be easily obtained.