Counting partitions of Gn,1/2$$ {G}_{n,1/2} $$ with degree congruence conditions

Pub Date : 2021-05-26 DOI:10.1002/rsa.21115
P. Balister, Emil Powierski, A. Scott, Jane Tan
{"title":"Counting partitions of Gn,1/2$$ {G}_{n,1/2} $$ with degree congruence conditions","authors":"P. Balister, Emil Powierski, A. Scott, Jane Tan","doi":"10.1002/rsa.21115","DOIUrl":null,"url":null,"abstract":"For G=Gn,1/2$$ G={G}_{n,1/2} $$ , the Erdős–Renyi random graph, let Xn$$ {X}_n $$ be the random variable representing the number of distinct partitions of V(G)$$ V(G) $$ into sets A1,…,Aq$$ {A}_1,\\dots, {A}_q $$ so that the degree of each vertex in G[Ai]$$ G\\left[{A}_i\\right] $$ is divisible by q$$ q $$ for all i∈[q]$$ i\\in \\left[q\\right] $$ . We prove that if q≥3$$ q\\ge 3 $$ is odd then Xn→dPo(1/q!)$$ {X}_n\\overset{d}{\\to \\limits}\\mathrm{Po}\\left(1/q!\\right) $$ , and if q≥4$$ q\\ge 4 $$ is even then Xn→dPo(2q/q!)$$ {X}_n\\overset{d}{\\to \\limits}\\mathrm{Po}\\left({2}^q/q!\\right) $$ . More generally, we show that the distribution is still asymptotically Poisson when we require all degrees in G[Ai]$$ G\\left[{A}_i\\right] $$ to be congruent to xi$$ {x}_i $$ modulo q$$ q $$ for each i∈[q]$$ i\\in \\left[q\\right] $$ , where the residues xi$$ {x}_i $$ may be chosen freely. For q=2$$ q=2 $$ , the distribution is not asymptotically Poisson, but it can be determined explicitly.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For G=Gn,1/2$$ G={G}_{n,1/2} $$ , the Erdős–Renyi random graph, let Xn$$ {X}_n $$ be the random variable representing the number of distinct partitions of V(G)$$ V(G) $$ into sets A1,…,Aq$$ {A}_1,\dots, {A}_q $$ so that the degree of each vertex in G[Ai]$$ G\left[{A}_i\right] $$ is divisible by q$$ q $$ for all i∈[q]$$ i\in \left[q\right] $$ . We prove that if q≥3$$ q\ge 3 $$ is odd then Xn→dPo(1/q!)$$ {X}_n\overset{d}{\to \limits}\mathrm{Po}\left(1/q!\right) $$ , and if q≥4$$ q\ge 4 $$ is even then Xn→dPo(2q/q!)$$ {X}_n\overset{d}{\to \limits}\mathrm{Po}\left({2}^q/q!\right) $$ . More generally, we show that the distribution is still asymptotically Poisson when we require all degrees in G[Ai]$$ G\left[{A}_i\right] $$ to be congruent to xi$$ {x}_i $$ modulo q$$ q $$ for each i∈[q]$$ i\in \left[q\right] $$ , where the residues xi$$ {x}_i $$ may be chosen freely. For q=2$$ q=2 $$ , the distribution is not asymptotically Poisson, but it can be determined explicitly.
分享
查看原文
计算Gn,1/2 $$ {G}_{n,1/2} $$在度同余条件下的分区
对于Erdős-Renyi随机图G=Gn,1/2 $$ G={G}_{n,1/2} $$,设Xn $$ {X}_n $$为表示V(G) $$ V(G) $$分成集合A1,…,Aq $$ {A}_1,\dots, {A}_q $$的不同分区数的随机变量,使得对于所有i∈[q] $$ i\in \left[q\right] $$, G[Ai] $$ G\left[{A}_i\right] $$中每个顶点的度数都可以被q $$ q $$整除。证明了如果q≥3 $$ q\ge 3 $$是奇数则Xn→dPo(1/q!) $$ {X}_n\overset{d}{\to \limits}\mathrm{Po}\left(1/q!\right) $$,如果q≥4 $$ q\ge 4 $$是偶数则Xn→dPo(2q/q!) $$ {X}_n\overset{d}{\to \limits}\mathrm{Po}\left({2}^q/q!\right) $$。更一般地,我们证明了当我们要求G[Ai] $$ G\left[{A}_i\right] $$中的所有度对每个i∈[q] $$ i\in \left[q\right] $$都等于xi $$ {x}_i $$模q $$ q $$时,分布仍然是渐近泊松的,其中残数xi $$ {x}_i $$可以自由选择。对于q=2 $$ q=2 $$,分布不是渐近泊松分布,但可以显式确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信