J. Nagi, K. S. Yap, S. Tiong, Syed Khaleel Ahmed, A. Mohammad
{"title":"Detection of abnormalities and electricity theft using genetic Support Vector Machines","authors":"J. Nagi, K. S. Yap, S. Tiong, Syed Khaleel Ahmed, A. Mohammad","doi":"10.1109/TENCON.2008.4766403","DOIUrl":null,"url":null,"abstract":"Efficient methods for detecting electricity fraud has been an active research area in recent years. This paper presents a hybrid approach towards non-technical loss (NTL) analysis for electric utilities using genetic algorithm (GA) and support vector machine (SVM). The main motivation of this study is to assist Tenaga Nasional Berhad (TNB) in Malaysia to reduce its NTLs in the distribution sector. This hybrid GA-SVM model preselects suspected customers to be inspected onsite for fraud based on abnormal consumption behavior. The proposed approach uses customer load profile information to expose abnormal behavior that is known to be highly correlated with NTL activities. GA provides an increased convergence and globally optimized SVM hyper-parameters using a combination of random and prepopulated genomes. The result of the fraud detection model yields classified classes that are used to shortlist potential fraud suspects for onsite inspection. Simulation results prove the proposed method is more effective compared to the current actions taken by TNB in order to reduce NTL activities.","PeriodicalId":22230,"journal":{"name":"TENCON 2008 - 2008 IEEE Region 10 Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"165","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2008 - 2008 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2008.4766403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 165
Abstract
Efficient methods for detecting electricity fraud has been an active research area in recent years. This paper presents a hybrid approach towards non-technical loss (NTL) analysis for electric utilities using genetic algorithm (GA) and support vector machine (SVM). The main motivation of this study is to assist Tenaga Nasional Berhad (TNB) in Malaysia to reduce its NTLs in the distribution sector. This hybrid GA-SVM model preselects suspected customers to be inspected onsite for fraud based on abnormal consumption behavior. The proposed approach uses customer load profile information to expose abnormal behavior that is known to be highly correlated with NTL activities. GA provides an increased convergence and globally optimized SVM hyper-parameters using a combination of random and prepopulated genomes. The result of the fraud detection model yields classified classes that are used to shortlist potential fraud suspects for onsite inspection. Simulation results prove the proposed method is more effective compared to the current actions taken by TNB in order to reduce NTL activities.
近年来,有效的电力欺诈检测方法一直是一个活跃的研究领域。本文提出了一种基于遗传算法和支持向量机的电力系统非技术损失分析方法。本研究的主要动机是协助Tenaga Nasional Berhad (TNB)在马来西亚减少其在分销部门的NTLs。该混合GA-SVM模型基于异常消费行为预先选择可疑客户进行现场欺诈检查。所建议的方法使用客户负载概要信息来暴露已知与NTL活动高度相关的异常行为。遗传算法使用随机和预填充基因组的组合提供了更高的收敛性和全局优化的支持向量机超参数。欺诈检测模型的结果产生分类类,用于筛选潜在的欺诈嫌疑人以进行现场检查。仿真结果表明,与目前TNB为减少NTL活动而采取的措施相比,该方法更为有效。