SCC thermal model identification via advanced bias-compensated least-squares

R. Diversi, Andrea Bartolini, A. Tilli, Francesco Beneventi, L. Benini
{"title":"SCC thermal model identification via advanced bias-compensated least-squares","authors":"R. Diversi, Andrea Bartolini, A. Tilli, Francesco Beneventi, L. Benini","doi":"10.7873/DATE.2013.060","DOIUrl":null,"url":null,"abstract":"Compact thermal models and modeling strategies are today a cornerstone for advanced power management to counteract the emerging thermal crisis for many-core systems-on-chip. System identification techniques allow to extract models directly from the target device thermal response. Unfortunately, standard Least Squares techniques cannot effectively cope with both model approximation and measurement noise typical of real systems. In this work, we present a novel distributed identification strategy capable of coping with real-life temperature sensor noise and effectively extracting a set of low-order predictive thermal models for the tiles of Intel's Single-chip-Cloud-Computer (SCC) many-core prototype.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"80 1","pages":"230-235"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Compact thermal models and modeling strategies are today a cornerstone for advanced power management to counteract the emerging thermal crisis for many-core systems-on-chip. System identification techniques allow to extract models directly from the target device thermal response. Unfortunately, standard Least Squares techniques cannot effectively cope with both model approximation and measurement noise typical of real systems. In this work, we present a novel distributed identification strategy capable of coping with real-life temperature sensor noise and effectively extracting a set of low-order predictive thermal models for the tiles of Intel's Single-chip-Cloud-Computer (SCC) many-core prototype.
基于先进偏差补偿最小二乘的SCC热模型辨识
紧凑的热模型和建模策略是当今先进电源管理的基石,以抵消多核系统芯片上出现的热危机。系统识别技术允许直接从目标器件热响应中提取模型。不幸的是,标准最小二乘技术不能有效地处理模型逼近和实际系统典型的测量噪声。在这项工作中,我们提出了一种新的分布式识别策略,能够应对现实生活中的温度传感器噪声,并有效地提取一组低阶预测热模型,用于英特尔的单芯片云计算机(SCC)多核原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信