Combining Predictive Densities Using Bayesian Filtering with Applications to US Economic Data

Monica Billio, R. Casarin, F. Ravazzolo, H. V. Dijk
{"title":"Combining Predictive Densities Using Bayesian Filtering with Applications to US Economic Data","authors":"Monica Billio, R. Casarin, F. Ravazzolo, H. V. Dijk","doi":"10.2139/ssrn.2118577","DOIUrl":null,"url":null,"abstract":"Using a Bayesian framework this paper provides a multivariate combination approach to prediction based on a distributional state space representation of predictive densities from alternative models. In the proposed approach the model set can be incomplete. Several multivariate time-varying combination strategies are introduced. In particular, a weight dynamics driven by the past performance of the predictive densities is considered and the use of learning mechanisms. The approach is assessed using statistical and utility-based performance measures for evaluating density forecasts of US macroeconomic time series and of surveys of stock market prices.","PeriodicalId":85755,"journal":{"name":"The Malayan economic review : the journal of the Economic Society of Singapore, the Department of Economics and Statistics and the Economic Research Centre of the University of Singapore","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Malayan economic review : the journal of the Economic Society of Singapore, the Department of Economics and Statistics and the Economic Research Centre of the University of Singapore","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2118577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Using a Bayesian framework this paper provides a multivariate combination approach to prediction based on a distributional state space representation of predictive densities from alternative models. In the proposed approach the model set can be incomplete. Several multivariate time-varying combination strategies are introduced. In particular, a weight dynamics driven by the past performance of the predictive densities is considered and the use of learning mechanisms. The approach is assessed using statistical and utility-based performance measures for evaluating density forecasts of US macroeconomic time series and of surveys of stock market prices.
结合贝叶斯滤波预测密度在美国经济数据中的应用
利用贝叶斯框架,本文提供了一种基于可选模型的预测密度的分布状态空间表示的多元组合方法。在提出的方法中,模型集可能是不完整的。介绍了几种多变量时变组合策略。特别地,考虑了由预测密度的过去表现驱动的权重动态和学习机制的使用。该方法使用统计和基于效用的绩效指标来评估美国宏观经济时间序列和股票市场价格调查的密度预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信