NNARX Model of the PEMFC Used Neural Network Pruning Model Structure

Shan-Jen Cheng, J. Miao, Te-Jen Chang
{"title":"NNARX Model of the PEMFC Used Neural Network Pruning Model Structure","authors":"Shan-Jen Cheng, J. Miao, Te-Jen Chang","doi":"10.18178/IJOEE.4.1.1-5","DOIUrl":null,"url":null,"abstract":"The paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-Regressive model with eXogenous inputs (NNARX) approach. The Multilayer Perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The NNARX model structure is according to the Optimal Brain Surgeon (OBS) methodology to indicate the significant network structure. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model based on OBS technique can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently. ","PeriodicalId":13951,"journal":{"name":"International Journal of Electrical Energy","volume":"16 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/IJOEE.4.1.1-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-Regressive model with eXogenous inputs (NNARX) approach. The Multilayer Perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The NNARX model structure is according to the Optimal Brain Surgeon (OBS) methodology to indicate the significant network structure. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model based on OBS technique can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently. 
PEMFC的NNARX模型采用神经网络剪枝模型结构
本文采用带外源输入的神经网络自回归模型(NNARX)方法对PEMFC进行了非线性建模。应用多层感知(MLP)网络对PEMFC的NNARX模型的结构进行评价。NNARX模型结构根据最优脑外科医生(OBS)方法来表示显著网络结构。通过对PEMFC输出电压和输入电流的测量实验,进一步验证了NNARX模型的有效性和准确性。结果表明,基于OBS技术得到的非线性NNARX模型能够有效地逼近PEMFC的动态模式,且模型输出与系统实测输出一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信