Quantum machine learning‐based framework to detect heart failures in Healthcare 4.0

Manushi Munshi, Rajesh Gupta, N. Jadav, Zdzislaw Polkowski, S. Tanwar, Fayez Alqahtani, Wael Said
{"title":"Quantum machine learning‐based framework to detect heart failures in Healthcare 4.0","authors":"Manushi Munshi, Rajesh Gupta, N. Jadav, Zdzislaw Polkowski, S. Tanwar, Fayez Alqahtani, Wael Said","doi":"10.1002/spe.3264","DOIUrl":null,"url":null,"abstract":"Quantum machine learning (QML) is an emerging field that combines the power of quantum computing with machine learning (ML) techniques to solve complex problems. In recent years, QML algorithms have shown tremendous potential in various applications such as image recognition, natural language processing, health care, finance, and drug discovery. QML algorithms aim to reduce computation costs and solve complex problems beyond the scope of classical machine learning algorithms. In this article, we study the performance of two QML algorithms, that is, quantum support vector classifiers (QSVC) and variational quantum classifiers (VQC), for chronic heart disease prediction in Healthcare 4.0. The performance of the two classifiers is assessed using different evaluation metrics like accuracy, precision, recall, and F1 score. The authors concluded the superior performance of QSVC over VQC with an accuracy of 82%.","PeriodicalId":21899,"journal":{"name":"Software: Practice and Experience","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software: Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/spe.3264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum machine learning (QML) is an emerging field that combines the power of quantum computing with machine learning (ML) techniques to solve complex problems. In recent years, QML algorithms have shown tremendous potential in various applications such as image recognition, natural language processing, health care, finance, and drug discovery. QML algorithms aim to reduce computation costs and solve complex problems beyond the scope of classical machine learning algorithms. In this article, we study the performance of two QML algorithms, that is, quantum support vector classifiers (QSVC) and variational quantum classifiers (VQC), for chronic heart disease prediction in Healthcare 4.0. The performance of the two classifiers is assessed using different evaluation metrics like accuracy, precision, recall, and F1 score. The authors concluded the superior performance of QSVC over VQC with an accuracy of 82%.
医疗4.0中基于量子机器学习的心力衰竭检测框架
量子机器学习(QML)是一个新兴领域,它将量子计算的力量与机器学习(ML)技术相结合,以解决复杂问题。近年来,QML算法在图像识别、自然语言处理、医疗保健、金融和药物发现等各种应用中显示出巨大的潜力。QML算法旨在降低计算成本,解决经典机器学习算法无法解决的复杂问题。在本文中,我们研究了两种QML算法,即量子支持向量分类器(QSVC)和变分量子分类器(VQC)在医疗保健4.0中用于慢性心脏病预测的性能。两个分类器的性能使用不同的评估指标进行评估,如准确性、精度、召回率和F1分数。作者总结了QSVC优于VQC的性能,准确率为82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信