Techno-Economical Planning of an Off-Grid Integrated Renewable Energy System

Q4 Engineering
Akanksha Sharma, H. Singh, R. Viral, N. Anwer
{"title":"Techno-Economical Planning of an Off-Grid Integrated Renewable Energy System","authors":"Akanksha Sharma, H. Singh, R. Viral, N. Anwer","doi":"10.24840/2183-6493_008.006_0015","DOIUrl":null,"url":null,"abstract":"This paper focuses on reducing the LCOE (Levelized Cost of Energy), the unmet load, Net Present Cost (NPC) and the greenhouse gas emissions by the utilization of an optimized off-grid integrated renewable energy system. The LCOE has been reduced by 14.8% of that of DG and by 28.6 % of Diesel Generator (DG) with Battery System, whereas the NPC has been reduced by 14.7% of DG only system and by 28.7% of DG with Battery System. A comparison analysis has also been presented based on the performance of the proposed system and most recently published similar studies. To achieve these objectives, an optimization algorithm has been developed and simulated in Hybrid Optimization Model for Multiple Energy Resources (HOMER) software with different combinations of IRES, DG and battery systems. Similarly, intending to analyze the feasibility and performance in terms of the technical and economic aspects of the proposed system, HOMER is used. Based on the obtained results, broadly, it is examined that the proposed system decreases diesel consumption by around 8113 liters/year and the total emissions of greenhouse gas by about 21545 kg/year in the study area; thereby, it can be foreseen as a viable and sustainable option(s) for the development of more such systems in remote locations.","PeriodicalId":36339,"journal":{"name":"U.Porto Journal of Engineering","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"U.Porto Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24840/2183-6493_008.006_0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on reducing the LCOE (Levelized Cost of Energy), the unmet load, Net Present Cost (NPC) and the greenhouse gas emissions by the utilization of an optimized off-grid integrated renewable energy system. The LCOE has been reduced by 14.8% of that of DG and by 28.6 % of Diesel Generator (DG) with Battery System, whereas the NPC has been reduced by 14.7% of DG only system and by 28.7% of DG with Battery System. A comparison analysis has also been presented based on the performance of the proposed system and most recently published similar studies. To achieve these objectives, an optimization algorithm has been developed and simulated in Hybrid Optimization Model for Multiple Energy Resources (HOMER) software with different combinations of IRES, DG and battery systems. Similarly, intending to analyze the feasibility and performance in terms of the technical and economic aspects of the proposed system, HOMER is used. Based on the obtained results, broadly, it is examined that the proposed system decreases diesel consumption by around 8113 liters/year and the total emissions of greenhouse gas by about 21545 kg/year in the study area; thereby, it can be foreseen as a viable and sustainable option(s) for the development of more such systems in remote locations.
离网综合可再生能源系统的技术经济规划
本文重点研究了优化后的离网可再生能源综合发电系统在降低电力平准化成本(LCOE)、未满足负荷、净当前成本(NPC)和温室气体排放方面的作用。LCOE减少了14.8%的DG和28.6%的柴油发电机(DG)与电池系统,而NPC减少了14.7%的DG系统和28.7%的DG与电池系统。还根据所提议的系统的性能和最近发表的类似研究进行了比较分析。为了实现这些目标,我们开发了一种优化算法,并在多能源混合优化模型(HOMER)软件中对IRES、DG和电池系统的不同组合进行了仿真。同样,为了从技术和经济方面分析拟议系统的可行性和性能,使用了荷马。根据所获得的结果,从总体上看,该系统在研究区域内可减少约8113升/年的柴油消耗量和约21545千克/年的温室气体排放;因此,可以预见它是在偏远地点发展更多这类系统的可行和可持续的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
U.Porto Journal of Engineering
U.Porto Journal of Engineering Engineering-Engineering (all)
CiteScore
0.70
自引率
0.00%
发文量
58
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信