Finite groups scheme actions and incompressibility of Galois covers: beyond the ordinary case

Pub Date : 2021-02-11 DOI:10.4171/dm/868
N. Fakhruddin, Rijul Saini
{"title":"Finite groups scheme actions and incompressibility of Galois covers: beyond the ordinary case","authors":"N. Fakhruddin, Rijul Saini","doi":"10.4171/dm/868","DOIUrl":null,"url":null,"abstract":"Inspired by recent work of Farb, Kisin and Wolfson, we develop a method for using actions of finite group schemes over a mixed characteristic dvr R to get lower bounds for the essential dimension of a cover of a variety over K = Frac(R). We then apply this to prove p-incompressibility for congruence covers of a class of unitary Shimura varieties for primes p at which the reduction of the Shimura variety (at any prime of the reflex field over p) does not have any ordinary points. We also make some progress towards a conjecture of Brosnan on the p-incompressibility of the multiplication by p map of an abelian variety.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Inspired by recent work of Farb, Kisin and Wolfson, we develop a method for using actions of finite group schemes over a mixed characteristic dvr R to get lower bounds for the essential dimension of a cover of a variety over K = Frac(R). We then apply this to prove p-incompressibility for congruence covers of a class of unitary Shimura varieties for primes p at which the reduction of the Shimura variety (at any prime of the reflex field over p) does not have any ordinary points. We also make some progress towards a conjecture of Brosnan on the p-incompressibility of the multiplication by p map of an abelian variety.
分享
查看原文
有限群、方案作用和伽罗瓦覆盖的不可压缩性:超越一般情况
受Farb, Kisin和Wolfson最近工作的启发,我们开发了一种方法,用于在混合特征dvr上使用有限群方案的作用来获得K = Frac(R)上各种覆盖的基本维数的下界。然后,我们应用这一理论证明了一类酉Shimura变素数p的同余盖的p不可压缩性,在这些同余盖上(在反射场的任意素数p上)Shimura变数的约化没有任何常点。在关于阿贝尔变换的乘p映射的p不可压缩性的布鲁斯南猜想方面也取得了一些进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信