Particle Shape Control of Zn-Al Composite Oxides by Using Composite Hydroxides as a Precursor

Kohei Yamazaki, Mitsuaki Matsuoka, N. Murayama
{"title":"Particle Shape Control of Zn-Al Composite Oxides by Using Composite Hydroxides as a Precursor","authors":"Kohei Yamazaki, Mitsuaki Matsuoka, N. Murayama","doi":"10.4144/RPSJ.67.73","DOIUrl":null,"url":null,"abstract":"Zn-Al composite hydroxide by a co-precipitation method and its calcined products were prepared in different chemical composition. For the purpose of lowering calcination temperature and controlling particle morphology for ZnAl2O4 (spinel) synthesis, the obtained Zn-Al composite hydroxide was used as a precursor before a calcination operation. Zn-Al-CO3 LDH (Layered Double Hydroxide) is produced as a crystalline material in both chemical composition of spinel formation ([Zn2+]:[Al3+] = 1:2) and LDH formation ([Zn2+]:[Al3+] = 2:1). ZnAl2O4 is synthesized at lower calcination temperature of 700°C in the case of [Zn2+]:[Al3+] = 1:2. Zn-Al composite hydroxide with large plate-like particles is produced by applying a solvothermal treatment using ethylene glycol as a solvent to the Zn-Al composite hydroxide. When they are calcined, the composite oxide keeping the plate-like particle morphology of the precursor (Zn-Al LDH) is produced. It is clarified that ZnAl2O4 is synthesized at low temperature and the particle morphology is controlled by using Zn-Al LDH as a precursor.","PeriodicalId":20971,"journal":{"name":"Resources Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4144/RPSJ.67.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Zn-Al composite hydroxide by a co-precipitation method and its calcined products were prepared in different chemical composition. For the purpose of lowering calcination temperature and controlling particle morphology for ZnAl2O4 (spinel) synthesis, the obtained Zn-Al composite hydroxide was used as a precursor before a calcination operation. Zn-Al-CO3 LDH (Layered Double Hydroxide) is produced as a crystalline material in both chemical composition of spinel formation ([Zn2+]:[Al3+] = 1:2) and LDH formation ([Zn2+]:[Al3+] = 2:1). ZnAl2O4 is synthesized at lower calcination temperature of 700°C in the case of [Zn2+]:[Al3+] = 1:2. Zn-Al composite hydroxide with large plate-like particles is produced by applying a solvothermal treatment using ethylene glycol as a solvent to the Zn-Al composite hydroxide. When they are calcined, the composite oxide keeping the plate-like particle morphology of the precursor (Zn-Al LDH) is produced. It is clarified that ZnAl2O4 is synthesized at low temperature and the particle morphology is controlled by using Zn-Al LDH as a precursor.
以复合氢氧化物为前驱体控制Zn-Al复合氧化物的颗粒形状
采用共沉淀法制备了不同化学成分的锌铝复合氢氧化物及其煅烧产物。为了降低煅烧温度和控制ZnAl2O4(尖晶石)的颗粒形态,在煅烧前将得到的Zn-Al复合氢氧化物用作前驱体。在尖晶石形成([Zn2+]:[Al3+] = 1:2)和LDH形成([Zn2+]:[Al3+] = 2:1)的化学成分下,生成Zn-Al-CO3 LDH(层状双氢氧化物)。在[Zn2+]:[Al3+] = 1:2的条件下,煅烧温度为700℃,合成了ZnAl2O4。采用乙二醇作为溶剂对氢氧化锌-铝复合材料进行溶剂热处理,制备了具有大片状颗粒的氢氧化锌-铝复合材料。当它们被煅烧时,生成的复合氧化物保持了前驱体(Zn-Al LDH)的片状颗粒形态。阐明了以Zn-Al LDH为前驱体,在低温下合成ZnAl2O4,并控制了ZnAl2O4的颗粒形态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信