{"title":"Developing a Targeting Approach for Syngas Generation from Natural Gas","authors":"B. Patel, Bahizire Martin Mukeru","doi":"10.3311/ppch.21115","DOIUrl":null,"url":null,"abstract":"The conversion of natural and unconventional gas into syngas is a crucial intermediate step in the production of various important chemicals and liquid fuels. The syngas generation step usually requires the largest capital investment of the process and may also be very energy intensive. Therefore, determining the most efficient method of converting feedstock into syngas of the correct H2:CO ratio is of significant importance. The aim of this work was to set design and performance targets for different H2:CO ratios (depending on the downstream requirements) in terms of the carbon efficiency (including CO2 utilization or emissions), water usage, and energy requirements. It was shown that the overall process for natural gas tri-reforming is limited by the enthalpy change (ΔH = 0) and this process was able to produce work. It was further shown that high syngas ratios not only require significant amounts of natural gas and oxygen but also emit CO2.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.21115","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The conversion of natural and unconventional gas into syngas is a crucial intermediate step in the production of various important chemicals and liquid fuels. The syngas generation step usually requires the largest capital investment of the process and may also be very energy intensive. Therefore, determining the most efficient method of converting feedstock into syngas of the correct H2:CO ratio is of significant importance. The aim of this work was to set design and performance targets for different H2:CO ratios (depending on the downstream requirements) in terms of the carbon efficiency (including CO2 utilization or emissions), water usage, and energy requirements. It was shown that the overall process for natural gas tri-reforming is limited by the enthalpy change (ΔH = 0) and this process was able to produce work. It was further shown that high syngas ratios not only require significant amounts of natural gas and oxygen but also emit CO2.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.