Intrinsic mechanism for magnetothermal conductivity oscillations in spin-orbit-coupled nodal superconductors

W. Atkinson, A. Kampf
{"title":"Intrinsic mechanism for magnetothermal conductivity oscillations in spin-orbit-coupled nodal superconductors","authors":"W. Atkinson, A. Kampf","doi":"10.1103/PHYSREVRESEARCH.3.023023","DOIUrl":null,"url":null,"abstract":"We describe a mechanism by which the longitudinal thermal conductivity $\\kappa_{xx}$, measured in an in-plane magnetic field, oscillates as a function of field angle in layered nodal superconductors. These oscillations occur when the spin-orbit splitting at the nodes is larger than the nodal scattering rate, and are complementary to vortex-induced oscillations identified previously. In sufficiently anisotropic materials, the spin-orbit mechanism may be dominant. As a particular application, we focus on the cuprate high-temperature superconductor YBa$_2$Cu$_3$O$_{6+x}$. This material belongs to the class of Rashba bilayers, in which individual CuO$_2$ layers lack inversion symmetry although the crystal itself is globally centrosymmetric. We show that spin-orbit coupling endows $\\kappa_{xx}/T$ with a characteristic dependence on magnetic field angle that should be easily detected experimentally, and argue that for underdoped samples the spin-orbit contribution is larger than the vortex contribution. A key advantage of the magneto-thermal conductivity is that it is a bulk probe of spin-orbit physics, and therefore not sensitive to inversion breaking at surfaces.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.023023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a mechanism by which the longitudinal thermal conductivity $\kappa_{xx}$, measured in an in-plane magnetic field, oscillates as a function of field angle in layered nodal superconductors. These oscillations occur when the spin-orbit splitting at the nodes is larger than the nodal scattering rate, and are complementary to vortex-induced oscillations identified previously. In sufficiently anisotropic materials, the spin-orbit mechanism may be dominant. As a particular application, we focus on the cuprate high-temperature superconductor YBa$_2$Cu$_3$O$_{6+x}$. This material belongs to the class of Rashba bilayers, in which individual CuO$_2$ layers lack inversion symmetry although the crystal itself is globally centrosymmetric. We show that spin-orbit coupling endows $\kappa_{xx}/T$ with a characteristic dependence on magnetic field angle that should be easily detected experimentally, and argue that for underdoped samples the spin-orbit contribution is larger than the vortex contribution. A key advantage of the magneto-thermal conductivity is that it is a bulk probe of spin-orbit physics, and therefore not sensitive to inversion breaking at surfaces.
自旋轨道耦合节点超导体中磁热导率振荡的内在机制
我们描述了一种在平面内磁场中测量的纵向导热系数$\kappa_{xx}$作为场角函数在层状节点超导体中振荡的机制。当节点上的自旋轨道分裂大于节点散射率时,这些振荡就会发生,并且与之前发现的涡诱导振荡互补。在充分各向异性的材料中,自旋轨道机制可能占主导地位。作为一个特殊的应用,我们重点研究了铜高温超导体YBa$_2$Cu$_3$O$_{6+x}$。该材料属于Rashba双层结构,虽然CuO$_2$晶体本身是全局中心对称的,但个别CuO$_2$层缺乏反演对称性。我们证明了自旋轨道耦合使$\kappa_{xx}/T$具有对磁场角的特征依赖,这应该很容易通过实验检测到,并且认为对于欠掺杂样品,自旋轨道的贡献大于涡旋的贡献。磁热导的一个关键优势是它是自旋轨道物理的体探针,因此对表面的反转破裂不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信