Partial replacement of portland cement by bamboo ashes

Marcelly de Figueiredo Mendonça, Marcelo Martins Farias, Celestina Lima de Rezende Farias, M. S. Picanço, Alcibíades Negrão Macêdo
{"title":"Partial replacement of portland cement by bamboo ashes","authors":"Marcelly de Figueiredo Mendonça, Marcelo Martins Farias, Celestina Lima de Rezende Farias, M. S. Picanço, Alcibíades Negrão Macêdo","doi":"10.1590/1517-7076-rmat-2022-0298","DOIUrl":null,"url":null,"abstract":"Partial replacement of Portland cement by industrial waste or materials of natural origin can improve the mechanical strength of concrete and mortar and reduce production cost. In this context, ash from burning bamboo appears as a potential material for use, as it is natural with a renewable source and fast growth, which presents a higher concentration of silica in the outer walls of the stalks. Therefore, the objective of this work is to evaluate the use of bamboo stalk ash (Bambusa Vulgaris) as a partial replacement for Portland cement. For this purpose, bamboo ash was produced at three calcination temperatures (500ºC, 600ºC and 700ºC). The ashes were not characterized as pozzolans based on their chemical composition, however the ash produced at 600ºC obtained a performance index higher than that established by the Standard. The hydration of cement partially replaced by this ash was evaluated, in proportions of 0%, 6%, 10% and 14%, in relation to its mass. Mortars with the same replacement proportions were evaluated in the fresh state and hardened. The consistency in the fresh state remained constant at 227 mm, while the compressive strength, in the hardened state, increased by 15% with the addition of bamboo stem ash.","PeriodicalId":18246,"journal":{"name":"Matéria (Rio de Janeiro)","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matéria (Rio de Janeiro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1517-7076-rmat-2022-0298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Partial replacement of Portland cement by industrial waste or materials of natural origin can improve the mechanical strength of concrete and mortar and reduce production cost. In this context, ash from burning bamboo appears as a potential material for use, as it is natural with a renewable source and fast growth, which presents a higher concentration of silica in the outer walls of the stalks. Therefore, the objective of this work is to evaluate the use of bamboo stalk ash (Bambusa Vulgaris) as a partial replacement for Portland cement. For this purpose, bamboo ash was produced at three calcination temperatures (500ºC, 600ºC and 700ºC). The ashes were not characterized as pozzolans based on their chemical composition, however the ash produced at 600ºC obtained a performance index higher than that established by the Standard. The hydration of cement partially replaced by this ash was evaluated, in proportions of 0%, 6%, 10% and 14%, in relation to its mass. Mortars with the same replacement proportions were evaluated in the fresh state and hardened. The consistency in the fresh state remained constant at 227 mm, while the compressive strength, in the hardened state, increased by 15% with the addition of bamboo stem ash.
部分用竹灰替代波特兰水泥
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信