The mapping class group of connect sums of $S^2 \times S^1$

Tara E. Brendle, N. Broaddus, Andrew Putman
{"title":"The mapping class group of connect sums of $S^2 \\times S^1$","authors":"Tara E. Brendle, N. Broaddus, Andrew Putman","doi":"10.1090/tran/8758","DOIUrl":null,"url":null,"abstract":"Let $M_n$ be the connect sum of $n$ copies of $S^2 \\times S^1$. A classical theorem of Laudenbach says that the mapping class group $Mod(M_n)$ is an extension of $Out(F_n)$ by a group $(\\mathbb{Z}/2)^n$ generated by sphere twists. We prove that this extension splits, so $Mod(M_n)$ is the semidirect product of $Out(F_n)$ by $(\\mathbb{Z}/2)^n$, which $Out(F_n)$ acts on via the dual of the natural surjection $Out(F_n) \\rightarrow GL_n(\\mathbb{Z}/2)$. Our splitting takes $Out(F_n)$ to the subgroup of $Mod(M_n)$ consisting of mapping classes that fix the homotopy class of a trivialization of the tangent bundle of $M_n$. Our techniques also simplify various aspects of Laudenbach's original proof, including the identification of the twist subgroup with $(\\mathbb{Z}/2)^n$.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $M_n$ be the connect sum of $n$ copies of $S^2 \times S^1$. A classical theorem of Laudenbach says that the mapping class group $Mod(M_n)$ is an extension of $Out(F_n)$ by a group $(\mathbb{Z}/2)^n$ generated by sphere twists. We prove that this extension splits, so $Mod(M_n)$ is the semidirect product of $Out(F_n)$ by $(\mathbb{Z}/2)^n$, which $Out(F_n)$ acts on via the dual of the natural surjection $Out(F_n) \rightarrow GL_n(\mathbb{Z}/2)$. Our splitting takes $Out(F_n)$ to the subgroup of $Mod(M_n)$ consisting of mapping classes that fix the homotopy class of a trivialization of the tangent bundle of $M_n$. Our techniques also simplify various aspects of Laudenbach's original proof, including the identification of the twist subgroup with $(\mathbb{Z}/2)^n$.
S^2 \乘以S^1$的连接和的映射类群
设$M_n$是$S^2 \ * S^1$的$n$拷贝的连接和。Laudenbach的一个经典定理指出映射类群$Mod(M_n)$是由球体扭曲生成的群$(\mathbb{Z}/2)^n$对$Out(F_n)$的扩展。我们证明了这个扩展是分裂的,所以$Mod(M_n)$是$Out(F_n)$与$(\mathbb{Z}/2)^n$的半直积,其中$Out(F_n)$通过自然抛射$Out(F_n) \右行GL_n(\mathbb{Z}/2)$的对偶作用。我们将$Out(F_n)$分割为$Mod(M_n)$的子群,该子群由映射类组成,这些映射类固定了$M_n$的切线束的一个平凡化的同伦类。我们的技术还简化了Laudenbach原始证明的各个方面,包括用$(\mathbb{Z}/2)^n$识别扭转子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信