Detachable ultrasonic enabled inserter for neural probe insertion using biodissolvable Polyethylene Glycol

Po-Cheng Chen, A. Lal
{"title":"Detachable ultrasonic enabled inserter for neural probe insertion using biodissolvable Polyethylene Glycol","authors":"Po-Cheng Chen, A. Lal","doi":"10.1109/TRANSDUCERS.2015.7180877","DOIUrl":null,"url":null,"abstract":"We report on a method to reversibly bond and debond silicon neural probes to a silicon ultrasonic horn to enable ultrasonic actuation during neural probe insertion. Neural probes can be attached using Poly-Ethylene Glycol (PEG), a bio-dissolvable polymer, and consequently debonded from the ultrasonic driver by aqueous dissolution. We demonstrate reduced force during probe insertion corresponding to ultrasonically micro-cutting of tissue. Reduced insertion forces can lead to less damage and reduced immune response for longer life neural interfaces. Three different configurations of neural probes were tested demonstrating insertion force reduction significantly by a factor of 4.3. The probes were driven by 30 Vpp at 101.7 kHz. Our approach can potentially help inserting neural probes made in any new technology ultrasonically and increase the lifetime of neural probe recording sites.","PeriodicalId":6465,"journal":{"name":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2015.7180877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We report on a method to reversibly bond and debond silicon neural probes to a silicon ultrasonic horn to enable ultrasonic actuation during neural probe insertion. Neural probes can be attached using Poly-Ethylene Glycol (PEG), a bio-dissolvable polymer, and consequently debonded from the ultrasonic driver by aqueous dissolution. We demonstrate reduced force during probe insertion corresponding to ultrasonically micro-cutting of tissue. Reduced insertion forces can lead to less damage and reduced immune response for longer life neural interfaces. Three different configurations of neural probes were tested demonstrating insertion force reduction significantly by a factor of 4.3. The probes were driven by 30 Vpp at 101.7 kHz. Our approach can potentially help inserting neural probes made in any new technology ultrasonically and increase the lifetime of neural probe recording sites.
可拆卸的超声波插入器,用于神经探针插入,使用生物可溶解的聚乙二醇
我们报告了一种方法,可逆键和脱键硅神经探针到硅超声喇叭,使超声驱动在神经探针插入。神经探针可以使用聚乙二醇(PEG)(一种生物可溶聚合物)连接,然后通过水溶解与超声波驱动器分离。我们证明了在超声显微切割组织时探头插入时减少的力。减少插入力可以减少损伤,减少免疫反应,延长神经接口的寿命。对三种不同配置的神经探针进行了测试,结果显示插入力显著降低了4.3倍。探针被30vpp驱动,频率为101.7 kHz。我们的方法可以潜在地帮助插入任何新技术的超声神经探针,并增加神经探针记录部位的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信