Linking Source Code to Untangled Change Intents

Xiaoyu Liu, LiGuo Huang, Chuanyi Liu, Vincent Ng
{"title":"Linking Source Code to Untangled Change Intents","authors":"Xiaoyu Liu, LiGuo Huang, Chuanyi Liu, Vincent Ng","doi":"10.1109/ICSME.2018.00047","DOIUrl":null,"url":null,"abstract":"Previous work [13] suggests that tangled changes (i.e., different change intents aggregated in one single commit message) could complicate tracing to different change tasks when developers manage software changes. Identifying links from changed source code to untangled change intents could help developers solve this problem. Manually identifying such links requires lots of experience and review efforts, however. Unfortunately, there is no automatic method that provides this capability. In this paper, we propose AutoCILink, which automatically identifies code to untangled change intent links with a pattern-based link identification system (AutoCILink-P) and a supervised learning-based link classification system (AutoCILink-ML). Evaluation results demonstrate the effectiveness of both systems: the pattern-based AutoCILink-P and the supervised learning-based AutoCILink-ML achieve average accuracy of 74.6% and 81.2%, respectively.","PeriodicalId":6572,"journal":{"name":"2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":"19 1","pages":"393-403"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSME.2018.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Previous work [13] suggests that tangled changes (i.e., different change intents aggregated in one single commit message) could complicate tracing to different change tasks when developers manage software changes. Identifying links from changed source code to untangled change intents could help developers solve this problem. Manually identifying such links requires lots of experience and review efforts, however. Unfortunately, there is no automatic method that provides this capability. In this paper, we propose AutoCILink, which automatically identifies code to untangled change intent links with a pattern-based link identification system (AutoCILink-P) and a supervised learning-based link classification system (AutoCILink-ML). Evaluation results demonstrate the effectiveness of both systems: the pattern-based AutoCILink-P and the supervised learning-based AutoCILink-ML achieve average accuracy of 74.6% and 81.2%, respectively.
将源代码链接到未纠缠的更改意图
先前的工作[13]表明,当开发人员管理软件变更时,纠结的变更(即,在单个提交消息中聚集了不同的变更意图)可能会使跟踪到不同的变更任务变得复杂。识别从已更改的源代码到未纠缠的更改意图的链接可以帮助开发人员解决这个问题。然而,手动识别这样的链接需要大量的经验和审查工作。不幸的是,没有提供此功能的自动方法。在本文中,我们提出了AutoCILink,它通过基于模式的链接识别系统(AutoCILink- p)和基于监督学习的链接分类系统(AutoCILink- ml)自动识别代码以解纠缠的更改意图链接。评估结果证明了两种系统的有效性:基于模式的AutoCILink-P和基于监督学习的AutoCILink-ML的平均准确率分别为74.6%和81.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信