Lathifah Puji Hastuti, A. Kusumaatmaja, A. Darmawan, I. Kartini
{"title":"Photocatalytic membrane of TiO2/CNT decorated PAN nanofibers with enhanced performance under LED visible-light irradiation","authors":"Lathifah Puji Hastuti, A. Kusumaatmaja, A. Darmawan, I. Kartini","doi":"10.1177/0958305X221108494","DOIUrl":null,"url":null,"abstract":"Incorporating TiO2 with CNTs and PAN nanofiber structures results in a photocatalytic membrane composite with an attractive response in the visible region. It offers an efficient process without post-treatment separation at the end of the photocatalytic treatment. The composite membranes were fabricated using electrospinning at 7 kV with 10 cm in the distance between needle tip and collector at a flow rate of 1 mL h−1. Polyacrylonitrile (PAN) was used as the polymer matrix. All the as-spun composites exhibited randomly oriented nanofibers. CNT increased the fiber diameters from 324 to 463 nm. The bandgap of TiO2 also shifted from 3.15 to 2.76 eV at the narrowest The color removal kinetics follow the Langmuir-Hinshelwood pseudo-first-order kinetics model with the highest rate constant of 0.0225 min−1 shown by PAN/TiO2/CNT 20%. More than 95% color removal of methylene blue after 100 min irradiation has been achieved using LED lamps of low energy visible light (43.5 W). Such a result is supposed to be the highest employing low energy lamps.","PeriodicalId":11652,"journal":{"name":"Energy & Environment","volume":"31 1","pages":"2364 - 2385"},"PeriodicalIF":4.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0958305X221108494","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 1
Abstract
Incorporating TiO2 with CNTs and PAN nanofiber structures results in a photocatalytic membrane composite with an attractive response in the visible region. It offers an efficient process without post-treatment separation at the end of the photocatalytic treatment. The composite membranes were fabricated using electrospinning at 7 kV with 10 cm in the distance between needle tip and collector at a flow rate of 1 mL h−1. Polyacrylonitrile (PAN) was used as the polymer matrix. All the as-spun composites exhibited randomly oriented nanofibers. CNT increased the fiber diameters from 324 to 463 nm. The bandgap of TiO2 also shifted from 3.15 to 2.76 eV at the narrowest The color removal kinetics follow the Langmuir-Hinshelwood pseudo-first-order kinetics model with the highest rate constant of 0.0225 min−1 shown by PAN/TiO2/CNT 20%. More than 95% color removal of methylene blue after 100 min irradiation has been achieved using LED lamps of low energy visible light (43.5 W). Such a result is supposed to be the highest employing low energy lamps.
期刊介绍:
Energy & Environment is an interdisciplinary journal inviting energy policy analysts, natural scientists and engineers, as well as lawyers and economists to contribute to mutual understanding and learning, believing that better communication between experts will enhance the quality of policy, advance social well-being and help to reduce conflict. The journal encourages dialogue between the social sciences as energy demand and supply are observed and analysed with reference to politics of policy-making and implementation. The rapidly evolving social and environmental impacts of energy supply, transport, production and use at all levels require contribution from many disciplines if policy is to be effective. In particular E & E invite contributions from the study of policy delivery, ultimately more important than policy formation. The geopolitics of energy are also important, as are the impacts of environmental regulations and advancing technologies on national and local politics, and even global energy politics. Energy & Environment is a forum for constructive, professional information sharing, as well as debate across disciplines and professions, including the financial sector. Mathematical articles are outside the scope of Energy & Environment. The broader policy implications of submitted research should be addressed and environmental implications, not just emission quantities, be discussed with reference to scientific assumptions. This applies especially to technical papers based on arguments suggested by other disciplines, funding bodies or directly by policy-makers.