Hierarchical modeling of electron and hole transport in nanoparticle thin films: From ab initio to Monte Carlo

G. Zimányi, M. Voros, I. Carbone, S. Carter
{"title":"Hierarchical modeling of electron and hole transport in nanoparticle thin films: From ab initio to Monte Carlo","authors":"G. Zimányi, M. Voros, I. Carbone, S. Carter","doi":"10.1109/PVSC.2014.6925113","DOIUrl":null,"url":null,"abstract":"Nanoparticle solar cells show the promise of enhancing the efficiency of solar cells over the Shockley-Queisser limit due to the quantum-confinement-enhanced charge multiplication process. A fundamental challenge of nanoparticle solar cells, however, is that the same quantum confinement that enhances charge multiplication also tends to localize the carriers and thus hinders charge transport. To create a roadmap for overcoming this challenge, we developed a multi-scale transport modeling scheme that starts with ab initio modeling of individual nanoparticles, continues with extracting a few summary parameters that best characterize the physics of these nanoparticles, such as charging energies and size dependent energy levels, and finally feeds this information into a kinetic Monte Carlo hopping transport framework to simulate electron and hole transport across realistically modeled nanoparticle films and devices. We demonstrate the power of this hierarchical modeling by exploring the carrier mobilities of PbSe nanoparticle films as a function of composition, disorder and temperature, where comparison of our results with experiments is possible.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"49 1","pages":"1124-1126"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoparticle solar cells show the promise of enhancing the efficiency of solar cells over the Shockley-Queisser limit due to the quantum-confinement-enhanced charge multiplication process. A fundamental challenge of nanoparticle solar cells, however, is that the same quantum confinement that enhances charge multiplication also tends to localize the carriers and thus hinders charge transport. To create a roadmap for overcoming this challenge, we developed a multi-scale transport modeling scheme that starts with ab initio modeling of individual nanoparticles, continues with extracting a few summary parameters that best characterize the physics of these nanoparticles, such as charging energies and size dependent energy levels, and finally feeds this information into a kinetic Monte Carlo hopping transport framework to simulate electron and hole transport across realistically modeled nanoparticle films and devices. We demonstrate the power of this hierarchical modeling by exploring the carrier mobilities of PbSe nanoparticle films as a function of composition, disorder and temperature, where comparison of our results with experiments is possible.
纳米粒子薄膜中电子和空穴输运的分层建模:从从头算到蒙特卡罗
由于量子约束增强的电荷倍增过程,纳米粒子太阳能电池显示出提高太阳能电池效率超过Shockley-Queisser极限的希望。然而,纳米粒子太阳能电池的一个基本挑战是,增强电荷倍增的量子限制也倾向于使载流子局部化,从而阻碍电荷传输。为了创建克服这一挑战的路线图,我们开发了一个多尺度输运建模方案,该方案从单个纳米粒子的从头开始建模,继续提取一些最能表征这些纳米粒子物理特性的摘要参数,如充电能量和尺寸相关的能级,最后将这些信息输入到动态蒙特卡罗跳跃输运框架中,以模拟电子和空穴在真实模拟的纳米颗粒薄膜和器件之间的输运。我们通过探索PbSe纳米颗粒薄膜的载流子迁移率作为成分、无序性和温度的函数来证明这种分层建模的力量,其中我们的结果与实验的比较是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信