Zubayer Kabir Eisham, Md Monzurul Haque, Md Samiur Rahman, Mirza Muntasir Nishat, Fahim Faisal, Mohammad Rakibul Islam
{"title":"Chimp optimization algorithm in multilevel image thresholding and image clustering.","authors":"Zubayer Kabir Eisham, Md Monzurul Haque, Md Samiur Rahman, Mirza Muntasir Nishat, Fahim Faisal, Mohammad Rakibul Islam","doi":"10.1007/s12530-022-09443-3","DOIUrl":null,"url":null,"abstract":"<p><p>Multilevel image thresholding and image clustering, two extensively used image processing techniques, have sparked renewed interest in recent years due to their wide range of applications. The approach of yielding multiple threshold values for each color channel to generate clustered and segmented images appears to be quite efficient and it provides significant performance, although this method is computationally heavy. To ease this complicated process, nature inspired optimization algorithms are quite handy tools. In this paper, the performance of Chimp Optimization Algorithm (ChOA) in image clustering and segmentation has been analyzed, based on multilevel thresholding for each color channel. To evaluate the performance of ChOA in this regard, several performance metrics have been used, namely, Segment evolution function, peak signal-to-noise ratio, Variation of information, Probability Rand Index, global consistency error, Feature Similarity Index and Structural Similarity Index, Blind/Referenceless Image Spatial Quality Evaluatoe, Perception based Image Quality Evaluator, Naturalness Image Quality Evaluator. This performance has been compared with eight other well known metaheuristic algorithms: Particle Swarm Optimization Algorithm, Whale Optimization Algorithm, Salp Swarm Algorithm, Harris Hawks Optimization Algorithm, Moth Flame Optimization Algorithm, Grey Wolf Optimization Algorithm, Archimedes Optimization Algorithm, African Vulture Optimization Algorithm using two popular thresholding techniques-Kapur's entropy method and Otsu's class variance method. The results demonstrate the effectiveness and competitive performance of Chimp Optimization Algorithm.</p>","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"54 1","pages":"1-44"},"PeriodicalIF":2.7000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolving Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12530-022-09443-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multilevel image thresholding and image clustering, two extensively used image processing techniques, have sparked renewed interest in recent years due to their wide range of applications. The approach of yielding multiple threshold values for each color channel to generate clustered and segmented images appears to be quite efficient and it provides significant performance, although this method is computationally heavy. To ease this complicated process, nature inspired optimization algorithms are quite handy tools. In this paper, the performance of Chimp Optimization Algorithm (ChOA) in image clustering and segmentation has been analyzed, based on multilevel thresholding for each color channel. To evaluate the performance of ChOA in this regard, several performance metrics have been used, namely, Segment evolution function, peak signal-to-noise ratio, Variation of information, Probability Rand Index, global consistency error, Feature Similarity Index and Structural Similarity Index, Blind/Referenceless Image Spatial Quality Evaluatoe, Perception based Image Quality Evaluator, Naturalness Image Quality Evaluator. This performance has been compared with eight other well known metaheuristic algorithms: Particle Swarm Optimization Algorithm, Whale Optimization Algorithm, Salp Swarm Algorithm, Harris Hawks Optimization Algorithm, Moth Flame Optimization Algorithm, Grey Wolf Optimization Algorithm, Archimedes Optimization Algorithm, African Vulture Optimization Algorithm using two popular thresholding techniques-Kapur's entropy method and Otsu's class variance method. The results demonstrate the effectiveness and competitive performance of Chimp Optimization Algorithm.
期刊介绍:
Evolving Systems covers surveys, methodological, and application-oriented papers in the area of dynamically evolving systems. ‘Evolving systems’ are inspired by the idea of system model evolution in a dynamically changing and evolving environment. In contrast to the standard approach in machine learning, mathematical modelling and related disciplines where the model structure is assumed and fixed a priori and the problem is focused on parametric optimisation, evolving systems allow the model structure to gradually change/evolve. The aim of such continuous or life-long learning and domain adaptation is self-organization. It can adapt to new data patterns, is more suitable for streaming data, transfer learning and can recognise and learn from unknown and unpredictable data patterns. Such properties are critically important for autonomous, robotic systems that continue to learn and adapt after they are being designed (at run time).
Evolving Systems solicits publications that address the problems of all aspects of system modelling, clustering, classification, prediction and control in non-stationary, unpredictable environments and describe new methods and approaches for their design.
The journal is devoted to the topic of self-developing, self-organised, and evolving systems in its entirety — from systematic methods to case studies and real industrial applications. It covers all aspects of the methodology such as
Evolving Systems methodology
Evolving Neural Networks and Neuro-fuzzy Systems
Evolving Classifiers and Clustering
Evolving Controllers and Predictive models
Evolving Explainable AI systems
Evolving Systems applications
but also looking at new paradigms and applications, including medicine, robotics, business, industrial automation, control systems, transportation, communications, environmental monitoring, biomedical systems, security, and electronic services, finance and economics. The common features for all submitted methods and systems are the evolving nature of the systems and the environments.
The journal is encompassing contributions related to:
1) Methods of machine learning, AI, computational intelligence and mathematical modelling
2) Inspiration from Nature and Biology, including Neuroscience, Bioinformatics and Molecular biology, Quantum physics
3) Applications in engineering, business, social sciences.