Using probabilistic logic and the principle of maximum entropy for the analysis of clinical brain tumor data

Julian Varghese, C. Beierle, Nico Potyka, G. Kern-Isberner
{"title":"Using probabilistic logic and the principle of maximum entropy for the analysis of clinical brain tumor data","authors":"Julian Varghese, C. Beierle, Nico Potyka, G. Kern-Isberner","doi":"10.1109/CBMS.2013.6627826","DOIUrl":null,"url":null,"abstract":"Dealing with uncertainty that is inherently present in any medical domain, is one of the major challenges when designing a medical decision support system. We demonstrate how probabilistic logic can be used to design medical knowledge bases at the example of analysing clinical brain tumor data. We use MECoRe, a system implementing probabilistic conditional logic, to create a knowledge base BT that contains medical knowledge originating from both statistical data as well as from medical experts. Any incomplete or unspecified knowledge is completed by MECoRe in an information-theoretically optimal way by employing the principle of maximum entropy. BT is evaluated with respect to a series of queries regarding diagnosis and prognosis, using a real documented patient case.","PeriodicalId":20519,"journal":{"name":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2013.6627826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Dealing with uncertainty that is inherently present in any medical domain, is one of the major challenges when designing a medical decision support system. We demonstrate how probabilistic logic can be used to design medical knowledge bases at the example of analysing clinical brain tumor data. We use MECoRe, a system implementing probabilistic conditional logic, to create a knowledge base BT that contains medical knowledge originating from both statistical data as well as from medical experts. Any incomplete or unspecified knowledge is completed by MECoRe in an information-theoretically optimal way by employing the principle of maximum entropy. BT is evaluated with respect to a series of queries regarding diagnosis and prognosis, using a real documented patient case.
应用概率逻辑和最大熵原理对临床脑肿瘤数据进行分析
在设计医疗决策支持系统时,处理任何医疗领域固有的不确定性是主要挑战之一。本文以临床脑肿瘤数据分析为例,阐述了概率逻辑如何应用于医学知识库的设计。我们使用MECoRe,一个实现概率条件逻辑的系统,来创建一个知识库BT,其中包含来自统计数据和医学专家的医学知识。任何不完整或未确定的知识都由MECoRe采用最大熵原理以信息论最优的方式完成。使用真实记录的患者病例,对有关诊断和预后的一系列查询进行BT评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信