Detection of suspicious activity using mobile sensor data and Modified Sub-space K-NN for criminal investigations

YMER Digital Pub Date : 2022-08-17 DOI:10.37896/ymer21.08/49
Sukhada Aloni, Divya Shekhawata
{"title":"Detection of suspicious activity using mobile sensor data and Modified Sub-space K-NN for criminal investigations","authors":"Sukhada Aloni, Divya Shekhawata","doi":"10.37896/ymer21.08/49","DOIUrl":null,"url":null,"abstract":"With the bulk availability of mobile sensors, the data collected from them mustn’t be wasted. Nowadays the creation of black-box software that collects this data is not a very difficult task. It is possible to detect suspicious unlawful events using this black-box data. In this paper, we present a novel way of doing forensic investigation using a modified sub-space K-NN (MSK) algorithm. The MSK algorithm is capable of detecting suspicious activities from mobile sensor data. Using this technique, we could detect any normal activity versus suspicious activity with 99.7 % accuracy. We expect the future researcher to develop on this idea and build a solid digital forensic system capable of doing bias-free decisions. Keywords: Forensic, Mobile sensor data, Black box, mobile data collection","PeriodicalId":23848,"journal":{"name":"YMER Digital","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"YMER Digital","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37896/ymer21.08/49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the bulk availability of mobile sensors, the data collected from them mustn’t be wasted. Nowadays the creation of black-box software that collects this data is not a very difficult task. It is possible to detect suspicious unlawful events using this black-box data. In this paper, we present a novel way of doing forensic investigation using a modified sub-space K-NN (MSK) algorithm. The MSK algorithm is capable of detecting suspicious activities from mobile sensor data. Using this technique, we could detect any normal activity versus suspicious activity with 99.7 % accuracy. We expect the future researcher to develop on this idea and build a solid digital forensic system capable of doing bias-free decisions. Keywords: Forensic, Mobile sensor data, Black box, mobile data collection
基于移动传感器数据和改进子空间K-NN的犯罪侦查可疑活动检测
随着移动传感器的大量可用性,从它们收集的数据不能浪费。如今,创建收集这些数据的黑匣子软件并不是一项非常困难的任务。使用这些黑匣子数据可以检测到可疑的非法事件。在本文中,我们提出了一种使用改进的子空间K-NN (MSK)算法进行法医调查的新方法。MSK算法能够从移动传感器数据中检测可疑活动。使用这种技术,我们可以以99.7%的准确率检测任何正常活动和可疑活动。我们期待未来的研究人员在这个想法的基础上发展,并建立一个可靠的数字法医系统,能够做出无偏见的决定。关键词:法医,移动传感器数据,黑匣子,移动数据采集
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信